SOLDERING HANDBOOK

3rd Edition

Soldering Handbook

3rd Edition

by

Paul T. Vianco, Ph.D.

Sandia National Laboratories, Albuquerque, New Mexico

Table of Contents

Page No.

Per	rsonn	nel		<i>iii</i>
Pre	eface.			<i>iv</i>
Lis	t of T	ables		ix
Lis	t of F	igures.		xii
1.	Fund	dament	als of Soldering Technology	1
	1.1	Introd	uction	3
	1.2	Physic	al Metallurgy	3
		1.2.1	Metals and Alloys	3
			1.2.1.1 Phase Diagrams	5
			1.2.1.1.1 Binary Alloy Phase Diagrams	5
			1.2.1.1.2 Ternary Alloy Phase Diagrams	20
			1.2.1.2 Structures and Properties	27
			1.2.1.3 Solder Joint Formation and Microstructure	
			1.2.1.3.1 Wetting and Spreading of Molten Metals and Alloys (Equilibrium)	
			1.2.1.3.2 Wetting and Spreading of Molten Metals and Alloys (Kinetics)	56
			1.2.1.3.3 Solidification and Solder Joint Metallurgy	58
	1.3	Solder	Joint Design for Product Manufacturability and Service Reliability	107
		1.3.1	Product Manufacturability	107
		1.3.2	Product Reliability	119
			1.3.2.1 Static Loads	120
			1.3.2.2 Fatigue Loads	125
			1.3.2.3 Corrosion	132
			1.3.2.3.1 Atmospheric (Environmental) Corrosion	134
			1.3.2.3.2 Galvanic-Assisted Corrosion	135
			1.3.2.3.3 Voltage-Assisted Corrosion	139
			1.3.2.3.4 Stress Corrosion and Corrosion Fatigue Cracking	142
	1 /	Salda	1.5.2.5.5 CORTOSION MILLIGATION	142
	1.4		Density	144
		1.4.1 1/1/2	Electrical Properties	144
		1.4.2	Thermal Properties	1/7
		1.7.5	1 4 3 1 Thermal Properties_DSC Analysis	147
			1432 Thermal Properties—DTA Analysis	117
		1.4.4	Fluid and Solderability Properties	
			1.4.4.1 Fluid Properties	152
			1.4.4.2 Wetting/Spreading and Solderability Properties	
	1.5	Solder	Allov and Solder Joint Mechanical Properties—Measurement Techniques	
		1.5.1	Bulk Solder Mechanical Properties Measurements	165
		1.5.2	Solder Joint Mechanical Properties Measurements	165
r	Sald	lor Mot		170
Ζ.	2 1	Introd	uction	179
	$\frac{2.1}{2.2}$	Conta	mination	179
	2.2	Specif	ications	182
	2.5	Bulk a	nd Joint Properties of Solder Allovs	187
	2.7	2 4 1	Tin Tin-Lead Tin-Lead-Antimony Tin-Lead-Silver and Lead-Silver Solders	188
		2.4.2	Tin-Antimony, Tin-Antimony-Silver (Copper) and Tin-Silver Allovs	
		2.4.3	Tin-Zinc, Zinc-Aluminum, and Other Zinc-Containing Solders	
		2.4.4	Indium, Indium-Tin, Indium-Lead, and Other Indium-Containing Solders	
		2.4.5	Bismuth-Containing ('Fusible') Solders	

		2.4.6	Au-Based Solder Alloys	224
		2.4.7	Cd-Containing Solder Alloys	228
3	Sub	strate M	laterials	229
5.	3.1	Introdi	naction	
	3.2	Coatin	וסק	230
	3.3	Metall	ic Substrate Materials	
	0.0	3.3.1	Noble Metals and Allovs	
			3.3.1.1 Allov Descriptions	
			3.3.1.2 Solder Alloys	
			3.3.1.3 Cleaning Processes and Fluxes	
		3.3.2	Copper and Cu-Based Alloys	
			3.3.2.1 Alloy Descriptions	243
			3.3.2.2 Solder Alloys	248
			3.3.2.3 Cleaning Processes and Fluxes	
		3.3.3	Steels	252
			3.3.3.1 Alloy Descriptions	252
			3.3.3.2 Solder Alloys	253
			3.3.3.3 Cleaning Processes and Fluxes	253
		3.3.4	Stainless Steels and High-Alloy Fe-Based Materials	254
			3.3.4.1 Alloy Descriptions	254
			3.3.4.2 Solder Alloys	257
			3.3.4.3 Cleaning Processes and Fluxes	257
		3.3.5	Nickel and Nickel-Based Alloys	
			3.3.5.1 Alloy Descriptions	
		226	3.3.5.2 Solder Alloys	
			3.3.5.3 Cleaning Processes and Fluxes	
		3.3.6		
			3.3.6.1 Alloy Descriptions	
			3.3.6.2 Solder Alloys	
		227	3.3.0.5 Cleaning Processes and Fluxes	
		5.5.7	Aluminum and Al Alloys	
			3.3.7.1 Alloy Descriptions	
			3.3.7.2 Solder Alloys	
		338	Magnesium and Mg Alloys	
		5.5.0	3 3 8 1 Allov Descriptions	275
			3 3 8 2 Solder Allovs	273
			3 3 8 3 Cleaning Processes and Fluxes	279
		3.3.9	Tin and Sn Allovs	
			3.3.9.1 Allov Descriptions	
			3.3.9.2 Solder Allovs	
	3.3.9.3 Cleaning Processes and Fluxes	3.3.9.3 Cleaning Processes and Fluxes		
		3.3.10	Zinc and Zn Alloys	
			3.3.10.1 Alloy Descriptions	
			3.3.10.2 Solder Alloys	
			3.3.10.3 Cleaning Processes and Fluxes	
		3.3.11	Refractory Metals and Alloys	
			3.3.11.1 Alloy Descriptions	
			3.3.11.2 Solder Alloys	
			3.3.11.3 Cleaning Processes and Fluxes	
		3.3.12	Special Materials—Electrical Contact Materials	
			3.3.12.1 Alloy Descriptions	
			3.3.12.2 Solder Alloys	
			3.3.12.3 Cleaning Processes and Fluxes	

	3.4	Nonm	etallic Ma	aterials	
		3.4.1	Ceramic	es and Glasses	
			3.4.1.1	Material Description	
		3.4.2	Solder A	Alloys	
		3.4.3	Cleanin	g Processes and Fluxes	
4.	Flux	(es			291
	4.1	Introd	uction		
		4.1.1	Fundam	iental Concepts	
		4.1.2	How to	Use a Flux	
		4.1.3	Flux Ty	pes	
			4.1.3.1	Rosin-Based Fluxes	
			4.1.3.2	Organic Acid Fluxes	
			4.1.3.3	Inorganic Acid Fluxes	
			4.1.3.4	Reaction Fluxes	
			4.1.3.5	Atmospheres	
				4.1.3.5.1 Inert Atmospheres and Vacuum	
				4.1.3.5.2 Reactive Atmospheres	
5	Solo	ler Past	es		
	bolt				
6.	Ass	embly F	rocesses.		
	6.1	Introd	uction		
	6.2	Incom	ing Mate	rial Storage and Handling	
	6.3	Preass	embly Pr	eparation (Precleaning) Processes	
	6.4	Solder	ing Proce	25Ses	
		6.4.1		A (Cl-h-12 Dervers etc.)	
			6.4.1.1 6.4.1.2	A Global Perspective	
		612	0.4.1.2	Process Development Logistics	
		0.4.2	Fiand Sc 6 4 2 1	Soldoring Iron	
			6422	Soldering non-	
			6422	Process Development Coneral Permeter	
		613	0.4.2.5 Semiout	rocess Development—Oeneral Remarks	
		0.4.5	6 4 3 1	Variations on Torch Soldering (Robotic Automation)	3/18
			6432	Furnace Soldering	340
			0.4.3.2	6 4 3 2 1 Apparatus	349
				6 4 3 2 2 Process Development	354
			6.4.3.3	Vapor Phase Soldering	385
			6.4.3.4	Immersion (Dip) Soldering	
			6.4.3.5	Induction Soldering	
			6.4.3.6	Resistance Soldering	
			6.4.3.7	Laser Beam Soldering	
			6.4.3.8	Hot Gas Soldering	
			6.4.3.9	Ultrasonic Soldering	
	6.5	Postas	sembly C	Ileaning Techniques	
		6.5.1	Solder A	Assembly Residues	
		6.5.2	Cleanin	g Techniques	436
		6.5.3	Verifica	tion Techniques	
	6.6	Storag	e Consid	erations	
7.	Insr	ection '	Fechnique	es for Product Acceptance and Process Optimization	
	7.1	Introd	uction	······································	
	7.2	Defec	ts		
	7.3	Quant	itative De	efect Analysis	
	7.4	Defec	t Detectio	n	454

		7.4.1	Nondestructive Techniques		
			7.4.1.1 Visual Inspection and Microscopy		ļ
			7.4.1.2 X-ray Radiography/Laminography		į
			7.4.1.3 Ultrasonic Inspection		
			7.4.1.4 Infrared (or Dynamic Thermal) Imagin	ng465	
			7.4.1.5 Pressure and Vacuum Leak Testing		
			7.4.1.6 Proof Testing		1
			7.4.1.7 Liquid Dye or Fluorescent Dye Penetr	ant471	
		7.4.2	Destructive Techniques		,
			7.4.2.1 Metallographic Cross-Sectioning		r
			7.4.2.2 Mechanical Testing		
	7.5	Rewor	k and Repair		1
8.	Envii	ronmer	tal, Safety, and Health		
	8.1	Introd	iction		
	8.2	Base M	Ietals		
	8.3	Fluxes			
	8.4	Solder	S		į
	8.5	Solder	ing Processes		,
	8.6	Cleani	ng Processes		I
An	nexes				
A	Solut	tion of	the Thermal Expansion Mismatch Equations for	a Two-Base Material System	
	(Sing	gle Joir	t) Having Isotropic Materials and Temperature-I	ndependent Material Properties	
В	Meta	llogra	bhic Sample Preparation Procedure for Soft Sold	er Joint Specimens516	
	B .1	Grindi	ng and Polishing Procedure		
	B.2	Etchar	t for Intermetallic Compound Layer Accent—C	u Substrate516	ļ
С	Micr	ostruct	ures of Commonly Used Solder Alloys		,
D	Use o	of Thei	mocouples to Monitor Part Temperatures		
F	Refe	rences	· · · · · · · · · · · · · · · · · · ·	531	
ці т		renees			
Inc	lex				

List of Tables

Table

1.1	Table of the Elements, Giving Symbol, Atomic Number, and Atomic Mass	8
1.2	D Parameters vs. the d _m /H (r/H) Parameter for the Koshevnik et al., Calculation of the Solder/Flux	
	Interfacial Tension y _{LF}	49
1.3	Solderability Parameters of θ_c , γ_{LF} and $\gamma_{SF} - \gamma_{SL}$ Measured by the Wilhemy Plate (Wetting Balance)	
	Configuration for a Variety of Substrate Materials, Solder Compositions, and Fluxes	51
1.4	Thermal Expansion Coefficients of Materials Commonly Encountered in Soldering Technology	72
1.5	Solid-State Growth Kinetics Parameters for Selected Solders on Cu Substrate	91
1.6	Intermetallic Compound Layer Thickness on Soft and Hard Cu as a Function of Solder Alloy	
	for Extended Aging Times (<15 Years)	92
1.7	Solid-State Intermetallic Compound Layer Growth Kinetics for Sn and Sn-Pb Solder Coatings	00
1.0	on /0Cu-30Zn (Half-Hard) Cartridge Brass	98
1.8	Solid-State Growth Kinetics Parameters for Selected Solder and Substrate Combinations	100
1.9	Temperature-Dependent values of the Snear Modulus, G, the Snear Yield Stress, γ_y ,	101
1 10	and the Shear Yield Strain, γ_e , for 055n-5/PD Solder	131
1.10	Dansity Electrical Conductivity, Thermal Conductivity, and Coefficient of Thermal Evansion	138
1.11	for Sn Db Allovs and Soveral Other Solders	146
1 1 2	Viscosity Data for Selected Metals and Alloys	140
1.12	Viscosity Data for Sn-Ph Allows at Specific Temperatures	154
1.15	Qualitative Description of Base Metal Wettabilities	155
1.14	Guidelines and Specifications for Solderability Testing for Electronics Applications	157
1.15	List of ASTM Test Methods and Practices for Evaluating the Mechanical Properties	157
1.10	of Bulk Materials	166
1.17	List of ASTM Test Methods and Practices for Evaluation of the Mechanical Properties of	
	Adhesive Joints	167
2.1	Forms of Solder Materials	179
2.1 2.2	Forms of Solder Materials Resistivities of Common Metal Elements	179
2.1 2.2 2.3	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working	179 182
2.1 2.2 2.3	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A)	179 182 184
2.1 2.2 2.3 2.4	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn	179 182 184 189
 2.1 2.2 2.3 2.4 2.5 	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn	179 182 184 189 190
 2.1 2.2 2.3 2.4 2.5 2.6 	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn	179 182 184 184 189 190 191
 2.1 2.2 2.3 2.4 2.5 2.6 2.7 	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn	179 182 184 184 189 190 191 192
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn	179 182 184 189 190 191 192 192
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature	179 182 184 189 190 191 192 192
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed	179 182 184 189 190 191 192 192 192
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and	179 182 184 189 190 191 192 192 192
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and Temperature	179 182 184 189 190 191 192 192 192 192
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and Temperature Cyclic Compression/Tension Fatigue Life Data for Cu Ring-and-Plug Test with 100Sn Joints as	179 182 184 189 190 191 192 192 192 192
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and Temperature Cyclic Compression/Tension Fatigue Life Data for Cu Ring-and-Plug Test with 100Sn Joints as a Function of Maximum Stress and Temperature	179 179 182 184 189 190 191 192 192 192 192 192 192
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and Temperature Cyclic Compression/Tension Fatigue Life Data for Cu Ring-and-Plug Test with 100Sn Joints as a Function of Maximum Stress and Temperature ASTM B32 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders	179 179 182 182 184 190 190 191 192 192 192 192 192 192 193
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and Temperature Cyclic Compression/Tension Fatigue Life Data for Cu Ring-and-Plug Test with 100Sn Joints as a Function of Maximum Stress and Temperature ASTM B32 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders ISO/DIS 9453 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders	179 179 182 182 184 189 190 191 192 192 192 192 192 193 194
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and Temperature Cyclic Compression/Tension Fatigue Life Data for Cu Ring-and-Plug Test with 100Sn Joints as a Function of Maximum Stress and Temperature ASTM B32 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders ISO/DIS 9453 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders Composition Limits and Applications for Pb	179 179 182 182 189 190 191 192 192 192 192 192 192 193 194 195
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and Temperature Cyclic Compression/Tension Fatigue Life Data for Cu Ring-and-Plug Test with 100Sn Joints as a Function of Maximum Stress and Temperature ASTM B32 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders ISO/DIS 9453 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders Composition Limits and Applications for Pb Physical Properties of Pb	179 182 182 182 189 190 191 192 192 192 192 192 192 193 194 195 196
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16	Forms of Solder Materials Resistivities of Common Metal Elements. Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn. Physical Properties of Sn. Tensile Properties of Sn. Trensile Properties of Sn. Impact Properties of Sn. Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed. Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and Temperature. Cyclic Compression/Tension Fatigue Life Data for Cu Ring-and-Plug Test with 100Sn Joints as a Function of Maximum Stress and Temperature ASTM B32 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders. ISO/DIS 9453 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders. Composition Limits and Applications for Pb. Physical Properties of Pb. Bulk Mechanical Properties of Sn-Pb Solders.	179 179 182 184 189 190 191 192 192 192 192 192 192 193 194 195 196 197
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Impact Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and Temperature Cyclic Compression/Tension Fatigue Life Data for Cu Ring-and-Plug Test with 100Sn Joints as a Function of Maximum Stress and Temperature ASTM B32 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders ISO/DIS 9453 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders Composition Limits and Applications for Pb Physical Properties of Sn-Pb Solders Bulk Mechanical Properties of Sn-Pb Solders Bulk Tensile Strength Properties of 60Sn-40Pb Solder as a Function of Test Temperature	179 179 182 182 189 190 191 192 192 192 192 192 192 193 194 195 196 197
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17	Forms of Solder Materials Resistivities of Common Metal Elements Impurity Limits for Virgin Solder (ASTM B32) and Maximum Concentrations in Working Sn-Pb Solder Baths (IPC-S-815A) ASTM B339 Grades, Purity Levels, and Uses of Sn Physical Properties of Sn Tensile Properties of Sn Creep Properties of Sn Shear Strength of Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Test Temperature and Test Speed Stress to Rupture Data for Cu Ring-and-Plug Tests with 100Sn Joints as a Function of Stress and Temperature Cyclic Compression/Tension Fatigue Life Data for Cu Ring-and-Plug Test with 100Sn Joints as a Function of Maximum Stress and Temperature ASTM B32 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders ISO/DIS 9453 Specification for Sn-Pb, Sn-Pb-Sb, Sn-Pb-Ag, and Pb-Ag Solders Composition Limits and Applications for Pb Physical Properties of Sn-Pb Solders Bulk Mechanical Properties of Sn-Pb Solders Bulk Tensile Strength Properties of 60Sn-40Pb Solder as a Function of Test Temperature and Testing Rate	179 179 182 182 189 190 191 192 192 192 192 192 192 193 194 195 196 197 197
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.10	Forms of Solder Materials	179 182 182 182 189 190 191 192 192 192 192 192 192 193 194 195 196 197 198 108

2.20	Creep Life Data for Bulk Sn-Pb and Sn-Pb-Sb Alloys	200
2.21	Room-Temperature Tensile Strength of Cu Butt Joints Formed with Sn-Pb Solders, as a Function	
	of Tin Content	200
2.22	Torsional Shear Test Strengths of Cu Soldered Joints	200
2.23	Rated Internal Pressure for Cu Tube Solder Joints	
2.24	Physical Properties of 60Sn-40Ph Allov	201
2.25	Solderability Parameters of Contact Angle (θ) and Solder-Flux Interfacial Tension (v_{r}) for	
2.20	60Sn-40Ph and 63Sn-37Ph Solders	202
2.26	Creen Runture Strength of Bulk 60Sn-40Ph Solder	203
2.20	Ring-and-Plug and Simple I an Shear 60Sn-40Pb/Cu Solder Joint Strengths as a Function of	
2.21	Test Temperature and Testing Rate	205
2.28	Ring and Plug Creen Runture Data for 60Sn 40Pb/Cu Solder Joints as a Function of	205
2.20	Temperature and Strass	206
2 20	Ring and Plug Estique Life Data for 60Sn 40Pb/Cu Solder Joints as a Function of	200
2.29	Applied Stress, Test Temperature, and Displacement Pate	207
2 20	Applied Stress, lest reinperature, and Displacement Kate	207
2.50	Controston Data fan De and Carin Mariana Madia	200
2.31	Corrosion Data for PD and Sn in various Media	209
2.32	mechanical Properties of Sn-PD-SD Solders	211
2.33	Room-Temperature Ultimate Tensile Strength and 0.2% Offset Yield Strength Data for Several	011
2.24	Sn-Pb-Ag Solders	211
2.34	ASTM B32 Solder Compositions for Sn-Sb and Sn-Ag-Sb-Cu Alloys	212
2.35	ISO/DIS Solder Specification for the 95Sn-5Sb Alloy	212
2.36	Physical Properties of the 95Sn-5Sb Solder	212
2.37	Alloy 95Sn-5Sb Bulk Tensile Strength and Ring-and-Plug Shear Strength as a Function	
	of Testing Rate and Temperature	213
2.38	Alloy 95Sn-5Sb Bulk Creep Rupture Data	213
2.39	Alloy 95Sn-5Sb Ring-and-Plug Creep Rupture (Shear) Data	214
2.40	Alloy 95Sn-5Sb Ring-and-Plug Fatigue Strength (Shear) Data	214
2.41	Alloy 96.5Sn-3.5Ag Bulk Tensile Strength and Ring-and-Plug Shear Strength Data as a	
	Function of Testing Rate and Temperature	215
2.42	Alloy 96.5Sn-3.5Ag Ring-and-Plug Fatigue Data as a Function of Testing Rate	216
2.43	Shear Stress at Failure of Double Cantilever Beam, Al Shear Samples Made	
	with Sn-Zn Solders	216
2.44	Shear Stress at Failure of Double Cantilever Beam, Al Shear Samples Made with 96Sn-4Zn	
	Solder, as a Function of Solder Joint Gap Thickness	216
2.45a	ANSI/J-STD-006 and ISO/DIS 9453 Specifications Covering the In-Containing Solders	219
2.45b	Chemical Compositions of Soft Solder Alloys Other Than Tin-Lead and Tin-Lead-Antimony Alloys	219
2.46	Properties of Bulk In-Containing Solders	220
2.47	Properties of Bulk In-Pb and In-Sn Solders	220
2.48	Shear Strength of 58In-42Sn/Cu Joints as a Function of Test Temperature and Strain Rate	220
2.49	ASTM B 32, ISO/DIS 9453, and ANSI/J-STD-006 Specification Covering the Bi-Based, and	
	Bi-Containing Solders	222
2.50	Some Properties of Low Melting Solders Containing Bi	223
2.51	Shear Strength (as a Function of Test Temperature and Crosshead Speed), Creep Rupture	
	Strength, and Fatigue Resistance of Cu Ring-and-Plug Samples Made with the	
	58Bi-42Sn Solder	224
2.52	ANSI/J-STD-006 Specification for Compositions of the Eutectic Au-Sn. Au-Ge, and Au-Si Solders.	226
2.53	Young's Modulus (Elastic Modulus) and Thermal Expansion Coefficient as a Function of	
	Temperature for Bulk Au-Ge, Au-Sn, and Au-Si Eutectic Bonding Materials	
		0
3.1	Tin and Solder Coating Protective Finishes per MIL-STD-1276D	231
3.2	Solderable and Protective Finishes for Selected Difficult-to-Solder Substrate Materials,	
	Based Largely Upon MIL-STD-1276D	234
3.3	Table of Noble Metals and Alloys and Their Melting Properties	242
3.4	General Description of Common Wrought and Cast Cu Alloys	244

3.5	Stress Relieving Temperature for Wrought Cu Alloys	245
3.6	Precleaning Solutions for Cu and Cu Alloys	249
3.7	Solderability Ranking and Flux Requirements of Cu and Cu-Alloys	251
3.8	General, Inorganic Fluxes for Use on Cu and Cu-Based Alloys	252
3.9	AISI Nomenclature for Low-Carbon and Low-Alloy Steels	258
3.10	Inorganic Fluxes for Steels, Stainless Steels, Monel Alloy, Cast Fe, and Al Alloys	252
3.11	List of Commonly Used Stainless Steels	256
3.12	List of Cleaning Chemistries for Stainless Steels	258
3.13	List of Commonly Used Ni-Based Alloys	260
3.14	List of Etching and Electropolishing Solutions for Tarnish Removal of Pb and Pb-Alloys	262
3.15	List of Commonly Used Al-Based Alloys	263
3.16	Qualitative Comparison of the Corrosion Potential of Dissimilar Metal Joints Containing Al	
	or Al Alloys	265
3.17	Heat Treat Temperatures and Times to Realize Full Anneal or "O" Temper in Wrought Al Alloys	266
3.18	Etchants for Al and Al-Based Alloys for Potential Scale-up as Precleaning Processes	270
3.19	List of Commonly Used Mg-Based Alloys	276
3.20	Maximum Time at Temperature for Exposure of Mg Alloys Before Significant Changes Take	
	Place to the Alloy Properties	277
3.21	Candidate Solder Alloys for Use on Mg and Mg-Based Alloys	279
3.22	List of the Refractory Metals and Their Melting Temperatures	283
3.23	Cleaning Techniques for Refractory Metals	284
3.24	Softening Temperatures of Common Glasses and Plastics	287
4.1	List of Flux Designations as Drovided in ANSI/LSTD 004	207
4.1	List of Decuments Deleted to Selder Elay Testing	297
4.2	List of ASTM and ISO Documents for Solder Flux Testing	290
4.5	List of ISO ASTM and ANSI/I STD Specifications on Solder Pastes and Elux Core Solder Wire	298
4.4	List of Inorganic Acid Eluyas and Metal Systems for Which Each Eluy Is Most Effective	298
4.5	The Proportions of N O Ar and CO Contents in Air as Expressed in yel % with	302
4.0	Parts Part Million (npm) and Partial Pressure	305
	ratis-rei-winnon (ppin), and ratia riessure	
5.1	Solder Paste Properties for Screen Printing, Stencil Printing, and Dispensing Techniques	312
61	General Guide to Solder Iron Power Rating and Tin Size	327
6.2	Properties of Common Fuel Cases	
6.3	Emissivities of Common Metal Surfaces	
6.5	Dev Point Temperatures Expressed as Moisture Content	
6.5	Materials/Process Sten Matrix	363
6.6	Contamination Levels Based Upon Material Procurement (ASTM B32) and Solder Process	
0.0	Baths (IPC-S-\$15A)	306
67	Computed Penetration Denths as a Function of Induction Field Frequency	
6.8	Electrical Resistivity $c \gamma$ and Thermal Conductivity as a Function of Temperature for	
0.0	Selected Materials	415
	Selected Hinterials	+13
7.1	Leak Rate Specifications	469
8.1	TWA Standards for Several Elemental Metals	506
8.2	Airborne Pb Concentrations for Typical Soldering Processes	507

List of Figures

Figure

Page No.

1.1	Historical time line of soldering technology	2
1.2	The material consistency of an alloy undergoing solidification which does take place over the	
	temperature range $T_s < T < T_1$	4
1.3	The binary Sn-Pb alloy system phase diagram	6
1.4	Sn-Pb alloy phase diagram to illustrate text discussion on 85Sn-15Pb	9
1.5	Optical micrograph of the microstructure of the 85Sn-15Pb solder. The dark areas are the	
	Pb-rich phase; the light regions are the Sn-rich phase. The cooling rate was 10°C/18°F/min	10
1.6	Optical micrograph of 63Sn-37Pb solder microstructure following aging at 70°C/158°F for	
	400 days in order to realize an equilibrium condition	10
1.7	Sn-Pb Alloy phase diagram to illustrate the text discussion on the 95Pb-5Sn starting composition	11
1.8	Optical micrograph of the microstructure of the 95Pb-5Sn solder. The cooling rate was 10°C/18°F/min	12
1.9	Binary alloy phase diagram for the Cu-Sn system	13
1.10	Binary alloy phase diagram for the Au-Sn system.	13
1 1 1	Binary alloy phase diagram for the Ni-Sn system	14
1 12	Binary alloy phase diagram of the Cu-Sn system with instructive markers per the text	14
1 13	Reaction product development at solder/substrate interfaces through the use of the binary alloy	
1.15	phase diagrams: (a) Schematic diagram of phase identification in bimetal couples for a simple	
	(AB) entectic diagram. (b) Ontical micrograph of the interface region between molten 100Sn	
	and Cu after 300 s at 260°C (500°F). (c) Optical micrograph of the molten Sn/Cu	
	interface after 300 s at 340°C (644°F). (d) Interfacial layer development from solid-state	
	aging at 170°C (338°F) for 402 days	16
1.14	Binary alloy phase diagram of the Au-Ag system	17
1.15	Binary alloy phase diagram of the Au-Ni system	18
1.16	Binary alloy phase diagram of the In-Sn system	19
1.17	A "first cut" of a three-dimensional, ternary alloy phase diagram. The graph of the axes is	
	shown in (a). The horizontal axes are A and B; the vertical axis is temperature. The example	
	of a solid solution alloy AB is illustrated in (b)	20
1.18	Construction of the Gibbs triangle for the ternary alloy comprised of A, B, and C.	
	(a) Outline with each component at the apex of the equilateral construct. (b) The triangle	
	with the lines of constant A component (as fractional quantity) in place. (c) The fully constructed	
	Gibbs triangle for the A-B-C ternary system	21
1.19	(a) Three-dimensional phase diagram (Gibbs triangle) for a simple solid-solution alloy.	
	(b) Isothermal section through the phase diagram entirely in the solid solution phase α .	
	(c) Isothermal section through the liquidus and solidus surfaces. (d) Isothermal section	
	through the liquidus and solidus surfaces, but at a higher temperature than in (c)	23
1.20	Liquidus projection map for a solid-solution alloy	24
1.21	Ternary alloy phase diagrams for the Ag-Bi-Pb system: (a) Liquidus projection. (b) Three-dimensional	
	schematic view to illustrate the liquidus trough. (c) The isothermal section at 127°C (261°F)	25
1.22	Isopleth sections through simple solid-solution ternary phase diagram: (a) B varies from 0% to 100%	
	while the ratio of A to C remains fixed; (b) two-dimensional construction of (a); (c) A is fixed	
	while B and C are allowed to vary; and (d) the two-dimensional construction of the case in (c)	26
1.23	The pseudo-binary alloy phase diagram (isopleth) for the ternary Au-Sn-Pb system, for	
	the case of constant 63Sn-37Pb ratio and variable Au content	27
1.24	(a) Schematic of the dislocation, looking down its "core"; (b) Transmission electron micrograph of	
	dislocations in "half hard" α -brass. (c) Movement of a dislocation and resulting displacement of	20
1.07	material under an applied stress σ .	29
1.25	(a) Face-centered cubic (FCC) crystal structure. (b) Hexagonal close-packed (HCP) crystal structure.	20
	(c) body-centered cubic (BCC) crystal structure. (a) Body-centered tetragonal (BC1) crystal structure	

1.26	(a) Optical micrograph of the 63Sn-37Pb solder showing the Pb-rich (dark) and Sn-rich (light) phases along with the grains of the latter phase after low-temperature aging at 70°C for 350 days.	21
1.27	(b) Frequency bar charts for the Pb-rich particle distribution shown in (a) Optical micrograph of the microstructure of the 96.5Sn-3.5Ag solder, showing the Sn-rich	
	phase and Ag-rich Ag ₃ Sn phase particles	.32
1.28	Schematic representation of the microstructural features observed in a two-phase material such	
	as found in a number of solder alloys. Within each of the phases, there can also exist a grain	
	structure pertinent to that material	.32
1.29	(a) Grain boundary sliding in a 98.14Sn-3.33Ag-4.83Bi ternary solder subjected to thermal	
	cycling. (b) Phase boundary sliding in 58Bi-42Sn near-eutectic solder subjected to thermal	
	cycling. (c) Material discontinuities in the form of voids and cracks as they form by the three	
	deformation mechanisms of dislocation motion. Optical micrographs are provided which	
	illustrate the latter two cases	.33
1.30	Optical micrograph of the 58Bi-42Sn solder. The darker phase is Bi-rich: the lighter phase is Sn-rich	.35
1 31	Ontical micrograph of a 58Bi-42Sn solder joint between Cu and an organic laminate substrate	
1101	that was exposed to a thermal cycling environment of: 0° C to 100° C (32° F to 212° F).	
	10°C/min (18°F/min) 5 min hold at the limits and 2500 cycles	35
1 32	TFM photographs of dislocation tangles in (a) 1100 Al (mild) and (b) ANSI Type 304	
1.52	stainless steel (severe) following strain hardening caused by cold working	36
1 33	(a) Ontical micrograph cross section and (b) SEM stereo micrograph of the through-hole solder joint	
1.55	(a) Optical interograph cross section and (b) SEW server interograph of the unough-note solder joint	
	electronics applications	38
1 3/	The strength properties of the solder joint components: (1) substrate(s) (2) solder strength and	
1.54	(3) the strength of the interfaces between the solder and the substrate(s), (2) solder strength, and	
	(5) the substrate(s) determine the solution and the substrate(s) determine the overall performance of the joint	30
1 35	Schematic representation of solder watting and solder spreading (a) The solid solder is placed	
1.55	on the substrate (b) The molten solder has wet the substrate, but has not spread beyond its initial	
	footnrint (c) The molten solder has wet and spread on the substrate surface	40
1 36	Schamatic representation of solder (moltan) spreading: (a) On open surfaces. (b) By the process	.40
1.50	of capillary flow in confined geometries (a.g. a gap)	41
1 27	Schemetic diagrams of open surface solder spreading for: (a) the formation of a sessile drop op	.41
1.57	schematic diagrams of open sufface solder spreading for. (a) the formation of a sessifie drop on a horizontal surface and (b) the formation of a manicous on a vertical surface. The peremeter A	
	is the contact analo	12
1 20	Is the contact angle	.42
1.38	schematic diagrams of the open surface solder spreading configuration, including the presence	
	or a nux coaring as would be the case in actual applications: (a) spreading on an infinite,	40
1 20	nonzontal surface. (b) The meniscus rise on a vertical surface to a height, H	.42
1.39	Schematic diagram of the solder wetting profile on a horizontal surface showing the cases of:	
	(a) welting. (b) Nonwelting. (c) Dewelting. Photographs of the corresponding phenomena,	4.4
1 40	Tooking down on the surface, appear below each profile	.44
1.40	Formation of the Cu ₃ Sn and Cu ₆ Sn ₅ intermetallic compound (sub-) layers at the interface	15
1 4 1	between Cu and 65Sh-5/Pb solder and accentuated by thermal aging	.45
1.41	Schematic diagram of dewetting resulting from the presence of nonwettable patches on the	
	substrate surface. A thick, molten solder film is able to bridge those nonwettable areas; nowever,	15
1 40	such is not the case when the solder coating thins out, resulting in dewetting	.45
1.42	Schematic diagram of dewetting caused by the formation of a reaction product at the solder/	
	substrate interface during contact between the molten solder and the base material. Should	
	the reaction product have poor wettability, its growth can reach a critical extent, resulting	10
	in dewetting of the solder film, particularly when the latter is very thin	.46
1.43	Schematic diagram illustrating dewetting that results from the dissolution of a solderable coating	
	placed over a difficult-to-solder or unsolderable base material surface	.47
1.44	Schematic diagram of the dissolution processes occurring during the wetting and spreading of a	
	solder nim over a Au-Ni finish. The wetting and spreading of solder over the Au film is followed	
	by the Au coating being dissolved into the solder; the solder then wets the underlying Ni coating	4-
	surface. A limited amount of dissolution of the Ni layer also takes place	.47

1.45	Schematic diagrams of a sessile drop on an infinitely wide surface. Cases (a) and (b) assume the spherical cap geometry for wetting and non-wetting, respectively. Case (c) is the case of wetting, but to an extent that the spherical cap geometry configuration can no longer be assumed
1.46	Contact angle as a function of the observed meniscus rise for a range of wire radii. These data are based upon a solder interfacial tension of 400 dynes/cm (close to the value for molten 63Sn-37Pb solder) and a solder density of 8 g/cm ³
1.47	Solder fillet profile at (a) the corner between two flat plates and (b) between a vertical wire (0.6 mm, 0.024 in.) and a flat plate
1.48	Schematic diagram of the solder fillet formed between two flat plates. The top and bottom surfaces are connected via the joint gap. Adding solder to the top side increases the size of the fillet until a critical solder quantity is reached. Adding solder beyond that point ("super-critical") does not increase fillet sizes, but simply causes the additional alloy to drip down from the joint
1.49	Substrate orientation and geometries for which gravity has a significant effect on soldering of the joint53
1.50	Capillary rise (h) of a fluid up a tube having a circular cross section or radius, r
1.51	Schematic diagram of the three basic configurations described by the kinetics, or rate, of solder wetting and spreading: (a) Sessile drop spreading on a horizontal surface. (b) Capillary rise in a vertical tube. (c) Capillary flow down into a horizontal tube or gap
1.52	Optical micrographs of the cylindrical solder joint (in cross section) between 96.5Sn-3.5Ag solder and Cu exemplifying the presence of voids and the range of their sizes. Voids can be very large so as to (a) span the entire gap thickness, or (b) be very small
1.53	Scanning electron micrographs of a solder joint formed with a Sn-Cu-Ag solder, showing the presence of several "blow holes" on the fillet surface. These defects are shown in (a) low magnification and (b) at higher magnification
1.54	Schematic diagrams of: (a) The blind gap and blind hole, solder joint geometries. (b) Measures to allow trapped flux, volatiles and air to escape from the gap hole
1.55	 (a) Round voids characteristic of entrapped gases such as flux volatiles and air. (b) Optical micrograph of a solder joint showing the presence of voids due to entrapped gases. (c) Optical micrograph illustrating that small voids due to entrapped gas that may cling to the solder/substrate interface. (d) Schematic diagram of voids formed as a result of nonwetting on the substrate surface. (e) Optical micrograph exemplifying a nonwetting void, in this case due to a loss of the solderable Ni layer that exposed the underlying metallized (unsolderable) ceramic substrate
1.56	Schematic diagram of voids in a solder joint: (a) Large voids, but few in number. (b) A large number of relatively small voids. The footprint view looks down on the joint; the profile view looks at section AA'
1.57	(a-c) Schematic diagram of the precipitation of low melting temperature phases on the grain boundaries (or phase boundaries) in a solidification event. (d) Significant concentration of precipitated phases at the grain boundary can provide an easy path for crack propagation, thus lowering the solder (and joint) strength
1.58	Phase diagram segment to illustrate compositional variations due to nonequilibrium solidification
1.59	Schematic diagram of the solidification process of a binary (isomorphous) alloy under nonequilibrium conditions corresponding to the phase diagram segment in Figure 1.58. Diffusion processes in the liquid phase are infinitely fast; those in the solder phase are slow. (a) The start of solidificationat T_1 : Liquid phase has composition L_1 and the solid precipitates with composition α_1 . (b) Temperature T_2 : Liquid phase compositions: $\alpha_1 + \alpha_2$. (c) Temperature T_3 : Liquid phase composition, L_3 , and solid-state phase compositions of α_3 ' resulting from the combination of layer compositions of α_3 ' resulting from the combination of layer compositions of α_3 ' resulting from the combination of layer composition, L_4 , and solid-state phase composition of α_4 ' resulting from the combination of layer composition $\alpha_1 + \alpha_2 + \alpha_3$. (d) Temperature T_4 (complete solidification if the system were at equilibrium) Liquid phase composition, L_4 , and solid-state phase composition of α_4 ' resulting from the combination of layer composition $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$. (e) Temperature T_5 : (complete solidification of the nonequilibrium system) Solid-state phase composition of α_5' resulting from particles of the combined layer composition $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5$, as the remaining liquid of composition, L_5 , precipitates out of α_5
1.60	Optical micrographs of the solidification structure of a 95.57Sn-3.47Ag-0.96Bi alloy under:
	(a) Low magnification. (b) ringi magnification

1.61	Scanning electron micrographs of solidification voids in a Sn-Cu-Ag solder joint at: (a) Low magnification. (b) A void at high magnification. (c) Optical micrograph of a cross sectional view showing the solidification void in a solder fillet profile
1.62	Optical micrographs of electronic solder joints exemplifying solidification cracking (a) in 96.5Sn-3.5Ag solder and (b) at the solder/substrate interface (more common location). The solder alloy in (b) is 91.84Sn-3.33Ag-4.83Bi
1.63	(a) Schematic diagram of the geometry changes to dissimilar materials upon cooling and their effects on the solder joint representing the case of global thermal expansion mismatch. The thermal expansion coefficient of base material #1 (α_1) is greater than that of base material #2 (α_2). (b) Schematic diagram of the geometry changes to the solder joint formed between similar substrate materials as would be the case of local thermal expansion mismatches. The thermal expansion coefficient of the solder (α_3) is greater than that of the base materials. In both cases (a) and (b), locally higher residual stresses will develop at the corners (arrows)
1.64	Schematic diagram of the formation of residual stresses in dissimilar materials that would be attached by a solder joint. It is assumed in this example that the solder joint behavior has a negligible role: (a) Both bars have the same length l_o and are at the same temperature T_o . (b) Unconstrained contraction of A and B as the temperature drops to T_f . (c) The constrained contraction of materials A and B with a solder joint. (d) The resulting geometry of the joined A and B materials as constrained by the presence of the solder joint
1.65	Schematic diagram of the a solder joint for analytical computation of the global, thermal expansion mismatch residual stresses: α_i is the layer thickness; E_i is the layer elastic modulus; α_i is the layer thermal expansion coefficient; and v_i is the layer Poisson's ratio
1.66	Schematic diagram of potential residual stresses that form in cylinder-shaped joints upon cooling after solidification. The type of stress (tensile versus compressive) depends upon the relative magnitudes of the thermal expansion coefficient of the base materials (and solder). The specific mechanical properties and geometries of the substrates and solder will also affect the magnitude of the respective residual stresses
1.67	Schematic diagram of the a solder joint that illustrates each of the components: (a) "standard" configuration in which solder directly wets the base metal and (b) the case in which a solderable finish is present over the substrate material
1.68	Dissolution rates of base metal wires into 60Sn-40Pb solder as a function of (molten) solder temperature78
1.69	Dissolution rates of Cu wire as a function Sn content in Sn-Pb and Sn-Pb-Ag solders for several molten solder temperatures. The temperature scale appears at the top of the plot
1.70	Dissolution of Cu base metal after exposure to molten 100Sn at 300°C (572°F) for 60 s
1.71	(a) Cu ₆ Sn ₅ precipitates from Cu dissolved into molten 100Sn during hot solder dipping. (b) The
1.72	 needles may also be observed to grow from the interface as for the case of a Sn-Ag-Bi solder on Cu80 (a) Needles of AuSn₄ intermetallic compound that precipitated from Au dissolved in 63Sn-37Pb solder. (b) IZOD impact strength as a function of Au concentration in 63Sn-37Pb solder showing the defect of "Au embrittlement"
1.73	Schematic diagram of a hypothetical, binary alloy phase diagram between elements A and B and the potential microstructure that forms at the interface of the A-B diffusion couple at a temperature of T _i (solid-state)
1.74	(a) Reproduction of the Cu-Sn binary alloy phase diagram. (b) Interface microstructure between 100Sn and Cu that has been (solid-state) aged at 135°C for 350 days showing the ε (Cu ₃ Sn) and η' (Cu ₆ Sn ₅) intermetallic (sub)layers
1.75	Ratio of ε (Cu ₃ Sn) to the intermetallic compound layer thickness for the (a) 100Sn/Cu couple and (b) 63Sn-37Pb/Cu couple
1.76	Schematic diagram of the grazing angle technique to modify the interface microstructure of solder joints. The actual thickness, h, is amplified to an effective value H by the factor, $1/\cos\theta$
1.77	Schematic diagram of the commonly used methodology for plotting intermetallic compound layer thickness as a function of aging time and temperature: (a) Thickness vs. time with curves
	pertaining to each temperature. (b) $\ln(y - y_0)$ vs. $\ln(t)$ for each test temperature

1.78	Graph of $\ln(y - y_o)$ versus $\ln(t)$ for the solid-state (total) intermetallic compound layer development between 63Sn-37Pb solder and 100Au substrates. The value of y_o was $0.3 \times 10-6$ m. The kinetic parameters were: A = $1.156 \times 10-4$ m-s ^{-0.54} ; n = 0.54; and $\Delta H = 31$ kJ/mol	88
1.79	Optical micrographs of the development of the intermetallic compound layer between 100Sn and Cu after aging for 200 days at temperatures of: (a) 70°C (158°F), (b) 100°C (212°F), (c) 135°C (275°F), and (d) 170°C (338°F). (e) Electron microprobe scan of the interface intermetallic compound layer chemistry from the Cu substrate to the solder field in the sample aged at 170°C (338°F) for 40 days. The traces of the Cu and Sn concentrations are shown in the plot	89
1.80	Optical micrographs of the intermetallic compound layers developed in solder/Cu diffusion couples that were aged for 400 days at 170°C (338°F): (a) 100Sn. (b) 63Sn-37Pb. (c) 95Sn-5Sb. (d) 96.5Sn-3.5Ag	90
1.81	Optical micrographs and electron microprobe traces of the intermetallic compound layer microstructure that forms between 58Bi-42Sn solder and Cu as a result of solid-state aging: (a) Micrograph, 85°C (185°F), 100 days. (b) Microprobe traces, 85°C (185°F), 100 days. (c) Micrograph, 120°C (248°F), 400 days. (d) Microprobe traces, 120°C (248°F), 400 days	93
1.82	Optical micrograph of the intermetallic compound that formed between 100In and Cu after solid-state aging at 100°C (212°F) for 350 days	95
1.83	(a) Optical micrograph of the intermetallic compound layer that formed between 50In-50Sn and Cu after aging for 200 days at 85°C (185°F). (b) Electron microprobe trace of Cu, Sn, and In elements at the interface between the Cu substrate and 50In-50Sn solder following aging at 100°C (212°F) for 200 days	95
1.84	Plots of the natural logarithm of the rate constant, k, as a function of the reciprocal temperature (1/T in °K) for selected substrate alloys and solders: (a) 95Sn-5Sb. (b) 95Sn-5Ag. (c) 60Sn-40Pb. (d) 10Sn-90Pb (tabular format)	97
1.85	Electron microprobe traces and SEM micrographs for hot solder dipped 63Sn-37Pb/Au couples that were solid-state aged for 90 days at: (a) 55°C (131°F). (b) 70°C (158°F). (c) 100°C (212°F)	99
1.86	Schematic diagram of the intermetallic compound layer morphology that develops by solid-state aging in the Au/50In-50Pb system	.100
1.87	Plot of intermetallic compound layer thickness as a function of the square root of time for several metal substrates having an electroplated 100Sn layer. The aging temperature was $170^{\circ}C$ (338°F)	101
1.88	(a) Low- and (b) high-magnification scanning electron micrographs of the intermetallic compound layer formation between 60Sn-40Pb solder and Kovar TM . The sample was aged at 170°C for 50 days. The interface reaction was comprised of the intermetallic compound formation: (#1) compound containing Sn, Fe, Ni, and Co and (#2 and #3) compound containing primarily Ni and Sn as Ni ₃ Sn ₄	102
1.89	Graphical representation of the intermetallic compound layer thickness of Sn-rich solders on Cu versus the Sn content of the solder for a homologous temperature of 0.88 and aging time of 400 days	.102
1.90	Total intermetallic compound layer thickness as a function of solder Sn content for homologous temperatures of 0.25, 0.50, 0.75, and 0.90 and aging times of: (a) 50 days. (b) 100 days. (c) 200 days. (d) 400 days. The intermetallic compound layer thickness values were computed from the respective forms of Equation 1-29 as determined per the experimental data of each solder alloy	103
1.91	Peel strength of Cu and brass alloy solder joints made with 63Sn-37Pb alloy as a function of intermetallic compound ("reaction") layer thickness. The soldering temperatures used to form the layer thicknesses were 265°C (510°F), 360°C (680°F), and 454°C (850°F)	.105
1.92	Schematic diagrams of several fundamental solder joint configurations	.109
1.93	Plot of meniscus (capillary) rise as a function of the gap width between two Cu plates. A rosin- based flux was used in the tests. The solder alloys were: (1) "SnSb," 95Sn-5Sb; (2) "SnPb" 60Sn-40Pb; (3) "SnAg," 96.5Sn-3.5Ag; (4) "SnAgBi," 91.84Sn-3.33Ag-4.83Bi; and (5) "SnCuAg,"	
1.94	95.5Sn-4.5Cu-0.5Ag. X-ray radiographs were used to image the capillary rise by the solder Plot of void content (as percentage of the joint's projected area) as a function of the gap width between two Cu plates. A rosin-based flux was used in the tests. The solder alloys were: (1) "SnSb," 95Sn-5Sb; (2) "SnPb" 60Sn-40Pb; (3) "SnAg," 96.5Sn-3.5Ag; (4) "SnAgBi," 91.84Sn-3.33Ag-4.83Bi; and (5) "SnCuAg" 95 5Sn 4 5Cu 0 5Ag. X ray radiographs were used to image the voids	.110
1.95	Schematic diagram of the flow of liquid solder through a joint having a bend	.111

1.96	Schematic diagram of cylindrical sleeve joints between dissimilar materials. The effect of thermal expansion mismatch between the two parts on the width of the gap during heating to	
	the soldering temperature is illustrated for the two cases: (a) $\alpha_{sleeve} >> \alpha_{cylinder}$ in which the	110
1.07	gap widens. (b) $\alpha_{\text{sleeve}} << \alpha_{\text{cylinder}}$ in which the gap becomes smaller	
1.97	schematic diagram of the effect of monten solder surface tension on the alignment of: (a) One block	
	solder in a lap joint	114
1.98	Schematic diagrams of self-igging techniques in solder joint design	.115
1.99	Schematic diagram of the behavior of molten solder at a substrate corner: (a) Solder has	
	difficulty wetting around a corner and will often collect at the edge. (b) Deposited, solid	
	solder films (e.g., electroplated coatings) will dewet from corners upon melting	
1.100	(a) Schematic representation of thermal conduction (Q) from the hot surface (T_H) to the cold	
	surface (T_c) of a solid cylinder having a cross section A and length l. (b) Illustration of	
	thermal conduction and thermal convection causing heat loss from a lap joint	117
1.101	Heating case study for the soldering of two Cu rods together	
1.102	Schematic diagram of (a) tension, (b) compression, and (c) shear loading configurations on a	
	material. The original dimensions (solid lines); dimensional change, Δl , due to the imposed	
	stresses; and the final dimensions (dashed lines) are also identified	121
1.103	Stress-strain curves	121
1.104	Schematic diagram of the three fundamental fracture mode loading regimes: (a) Mode I, tension.	
	(b) Mode II, shear. (c) Mode III, "trouser-leg tear"	122
1.105	Creep deformation curves for stress σ_1 , $\sigma_2 > \sigma_1$, and $\sigma_3 > \sigma_2$. Each of the three creep regimes—	
	primary (I), secondary (II), and tertiary (III)—are illustrated on the σ_1 curve	123
1.106	Schematic diagram of a butt joint undergoing a tensile load. (a) As the substrates pull apart, the	
	natural tendency is for the solder to neck down. However, the extent of necking is constrained by	
	the substrate, causing the solder to appear stronger (and less ductile) than it is as a bulk material.	
	(b) I ne joint strength is dependent upon all structures in the joint, including the intermetatic	124
1 107	Plot of apparent tensile strength of butt joints that were made between Cu and 96 5Sn 3.5Ag	124
1.107	solder and were tested at 3.5 mm/min (0.14 in /min)	124
1 108	Plot of apparent shear strength from ring-and-plug joints that were made between Cu and	127
1.100	96 5Sn-3 5Ag solder and were tested at 3.5 mm/min (0.14 in /min)	125
1.109	Sinusoidal load history illustrating fatigue: (a) The generalized case. (b) The special case in which $\sigma_{m} = 0$	
1.110	S-N fatigue curves for a mild steel and an Al alloy. Note that the steel has a well-defined	
	<i>fatigue limit</i> while the Al alloy appears to gradually approach a stress level limit	127
1.111	Fatigue data for bulk 63Sn-37Pb, plotted as cycles to failures versus plastic strain range	128
1.112	Schematic diagram of the representation of tensile/compressive and shear residual stresses in	
	the solder joints due to thermal expansion mismatch between the two members. The case of	
	heating is illustrated and $\alpha_1 > \alpha_2$: (a) A lap joint. (b) A cylindrical solder joint	129
1.113	Fatigue life curve from data of 60Sn-40Pb solder that was tested at -50°C (-58°F), 35°C (95°F),	
	and 125°C (257°F). $\Delta \gamma_p$ is the plastic strain range; N _f is the number of cycles to failure	
	(failure = 50% load drop)	130
1.114	Frequency-dependent fatigue life of 60Sn-40Pb solder at 35°C where v is the frequency and	
	N_f is the number of cycles to failure (failure = 50% load drop)	132
1.115	Photograph of corrosion activity on a solder joint made between 96.5Sn-3.5Ag solder and Cu	
	base materials caused by flux residues	132
1.116	Galvanic series for several metals and alloys in seawater	136
1.117	Schematic diagram of the idealized galvanic corrosion cell	137
1.118	Schematic diagram of a solder joint with a potential to cause galvanic corrosion. The tube-joint	
	structure (a) is broken down into the metal couples between the solder and the substrate materials	1.40
1 1 1 0	(b) that are covered with the electronyte	140
1.119	(a) two metals of the same composition are minnersed into an electrolyte. Both exhibit similar	
	two metal members the strip connected to the positive terminal will provide the oxidation half	
	reaction and corrode	.141

1.120	The process of electromigration between two metals under an applied electrical potential	141
1.121	Schematic diagram of corrosion process caused by a breach in the protective finish	143
1.122	Density of molten solder alloys as a function of solder temperature. The solid density is taken	
	as that value found at the melting point of the alloys	145
1.123	Schematic diagram of the thermogram provided by the differential scanning calorimeter (DSC).	
	Vertical deviations above zero are endothermic (energy input) reactions; deviations below the	
	zero point are exothermic reactions (energy release)	148
1.124	Schematic diagrams of observed peak configurations in the DSC are shown in (a), (b), and (c).	
	(d) Schematic diagram of DSC curves anticipated by the various compositions on the hypothetical,	
	simple eutectic binary alloy phase diagram: eutectic (A-A') and noneutectic (B-B' and C-C")	1.50
1 105	melting events	150
1.125	Plot of surface tension as a function of temperature for molten 100Sn and several liquid	150
1 1 2 6	Sn-Pb alloy compositions	152
1.120	Plot of solder-flux interfacial tension as a function of Sn content in Sn-PD solders for an organic (regin) flux and an increasing acid (ZnCl, based) flux. The colder temperature was 400%C/752%E	
	(rosin) nux and an morganic acid ($ZnCl_2$ -based) nux. The solder temperature was 400 C/752 F.	
	(MBP) procedures	153
1 1 2 7	Schematic diagram of the maximum hubble pressure (MBP) test for surface tension. In this	155
1.127	case, the interfacial tension between the fluid #1 (flux) hubble and the fluid #2 (molten solder)	
	would be measured	153
1.128	Techniques to evaluate the viscosity of a fluid: (a) Rotating cylinders. (b) Rotating disks.	100
0	(c) Tube-type (Saybolt). (d) Falling-sphere	156
1.129	Optical micrographs of the three cases of solder wetting: (a) Excellent wetting. (b) Dewetting.	
	(c) Nonwetting	158
1.130	Schematic diagram of the area-of-spread solderability test	159
1.131	Solderability test for conductive features on printed circuit boards, using solder flow	
	down a metal strip	159
1.132	Parallel plate, capillary rise solderability test: (a) Schematic diagram of sample construction	
	and testing. (b) An X-ray micrograph of the test sample, showing the extent of capillary rise (h)	
	and the void content in the gap	160
1.133	(a) Capillary rise as a function of gap width for the test sample shown in Figure 1.132a. The	
	solder compositions were: 95Sn-5Sb (SnSb), 63Sn-37Pb (SnPb), 96.5Sn-3.5Ag (SnAg),	
	91.84Sn-3.33Ag-4.83Bi (SnAgBi), and 95.5Sn-0.5Ag-4.0Cu (SnAgCu). (b) The percent	
	of the projected area of the gap that has voids	161
1.134	Schematic diagram of the rotary dip test to evaluate the solderability of holes in through-hole	
1 1 2 5	printed circuit boards	162
1.135	Schematic diagram of the globule solderability test method for wires	162
1.136	Schematic diagram of a wetting balance system. A stepper motor raises the solder pot to initiate	162
1 1 2 7	Schematic representation of the molton collider manicous that rises on a plate (courser) complete	105
1.137	schematic representation of the molten solder methods that fises of a plate (coupon) sample	164
1 1 2 8	Wetting balance curve of meniscus weight as a function of time. The various points along the	104
1.130	curve (A B and C) pertain to the position of the solder meniscus as shown in the insert diagrams	164
1 1 3 9	Schematic diagram of the meniscometer technique used to measure the meniscus height H	104
1.157	on a sample immersed into a bath of solder	164
1 140	Schematic diagrams of popular shear and tensile test configurations used to evaluate the	
1.1.10	respective strengths of solder joints	
1.141	Four-point bend test sample "B" geometry and test configuration per MIL-STD-1942A	169
1.142	Torsion test configuration for: (a) A sleeve joint. (b) A butt joint	170
1.143	Schematic diagram of the T-peel test sample and data output	171
1.144	"Dupont" pull test for measuring the strength of thin and thick film finishes: (a) Schematic	
	diagram. (b) Photograph of the test specimen	171
1.145	(a) Schematic diagram of the compact tension (CT) test sample configuration. (b) Logistics	
	for data analysis of the fatigue crack growth	172

1.146	Schematic diagram of the CT test specimen for solder joint testing	.173
1.147	Test geometries using dissimilar substrate materials to impose thermal fatigue in solder joints under temperature cycling environments: (a) Shear, (b) Tension, and (c) Mixed mode	.173
1.148	Schematic diagrams of the Charpy and IZOD impact test configurations, the samples of which were modified with a solder joint	.174
1.149	Schematic diagrams for: (a) Single-edge notch bar (SENB). (b) The compact tension (CT) specimen geometry for fracture toughness testing	.175
1.150	Fracture morphologies of solders: (a) Microvoid coalescence via large scale plasticity in the	
	tension test of 63Sn-37Pb solder. (b) Moderate plasticity observed in the tensile failure of	
	72.9Pb-15.2In-11.9Sn solder. (c) Transgranular fracture with limited ductility from a tensile	
	test of the 96.5Sn-3.5Ag solder. (d) Shear failure of a 63Sn-37Pb solder joint. (e) Interfacial	
	failures at the Ni/63Sn-3/Pb solder interface and a failure between the solderable finish (Ni)	177
1 1 5 1	and the underlying base material (thick film Ag-based frit)	.1//
1.151	1-peel fracture surface of a Cu sample made with 60Sn-40Pb solder. The surface shows the	170
1 1 5 2	Ontiged micrographs of phase boundary and grain boundary sliding arising from (thermal)	.170
1.132	fatigue of: (a) 58Bi- 42 Sn solder (b) 91 84Sn-3 33Ag-4 83Bi alloy	178
21	Schematic diagram showing the relationship between service temperatures processing	.170
2.1	temperatures, and the melting properties of the solder	180
2.2	Schematic diagram illustrating the relationship between the total electrical resistance and	.100
2.2	geometry of the serial structure of Cu. solder, and Al	.181
2.3	Optical micrographs showing the precipitated Cu ₆ Sn ₅ particles in a 95.5Sn-4.0Cu-0.5Ag solder	.183
2.4	SEM micrograph of AuSn ₄ needles resulting from the solid-state precipitation reaction	
	between Sn and Au	.183
2.5	SEM micrograph of intermetallic compound particles formed between Sn and Sb	.184
2.6	Contact angle of molten Sn on Cu as a function of reaction time and temperature	. 191
2.7	Tensile strength and ductility for 100Sn, 60Sn-40Pb, and 10Sn-90Pb alloys as a function of test temperature	.199
2.8	(a) Tensile strength, yield strength, ductility and (b) tensile modulus and Poisson's ratio of	
	63Sn-37Pb solder as a function of temperature	.203
2.9	Isothermal fatigue life (Nf) of bulk 60Sn-40Pb solder, as a function of plastic strain range	.204
2.10	Room-temperature fatigue life of bulk 60Sn-40Pb solder, as a function of applied stress	.204
2.11	(a) Lap shear strength (0.2 mm gap, rate unknown) and (b) Vickers hardness (100 g load) data	
	for 63Sn-37Pb/Cu joints and 63Sn-37Pb bulk solder, respectively, aged at room temperature	.208
2.12	Tensile strength of Sn-Pb-Sb alloys as a function of room-temperature aging	.210
2.13	Hardness of cast 47Sn-47Pb-6Sb alloy after room-temperature aging	.210
2.14	Bulk tensile strength and elongation of 95Sn-5Sb as a function of the test temperature	.213
2.15	Bulk creep rupture test data for 96.5Sn-3.5Ag solder	.215
2.16	Copper ring-and-plug creep rupture test data for 96.5Sn-3.5Ag solder	.215
2.17	Room-temperature shear strength of Zn-0.74Cu and 60Sn-40Pb solders as a function of	
	displacement rate	.217
2.18	Binary alloy phase diagrams for: (a) The Au-Ge and (b) Au-Si systems	.225
2.19	Temperature-dependent: (a) Bulk yield strength. (b) Bulk ultimate tensile strength. (c) Ductility	
	of Au-Sn, Au-Si, and Au-Ge eutectic solders. The test rate was 0.5 mm/min (0.02 in./min)	.227
3.1	Schematic diagram of the processes occurring at the front of spreading molten solder on a substrate	
	naving a protective metal finish. The process is comprised of the sequence of: (a) wetting and	
	into the molten solder (c) Wetting by the molten solder to the base material surface	230
32	Schematic diagram of the processes occurring at the front of the spreading molten solder on a coated	.250
5.4	base material. The molten solder takes part in the following sequence of processes: (a) Wetting	
	the protective finish. (b) Dissolution of the protective finishes. (c) Wetting of the solderable	
	coating. (d) Some dissolution of the solderable coating as a normal part of wetting	.235

3.3	Schematic diagram of the layer stacking for soldering to a ceramic, nonwettable surface. The adhesion layer serves to attach the solderable (plus protective) metal coatings to the	
	nonmetallic substrate material	236
3.4	Schematic diagram of the thick film layer that provides the solderable surface for the soldering	
	of ceramic substrate. The adhesion layer has been exaggerated in relative thickness; in most	
	cases, it is not visible in the optical microscope	237
3.5	Kinetics plots and equations for solid-state intermetallic compound layer growth for:	
	(a) 100Au/63Sn-37Pb solder. (b) 76Au-21Pt-3Pd/63Sn-37Pb couples. The Au and Au-Pt-Pd	
	base materials were used in sheet form	239
3.6	Precipitation hardening graphs of (a) ultimate tensile strength and (b) hardness vs. aging time and temperature for the 97.7Cu-1.9Be-0.4Ni allov	246
3.7	Through-hole solder joints made by Cu foil/electroless Cu/electroplated Cu construction as shown	
	in: (a) A low magnification view of the joint geometry. (b) A high magnification view of the layer	
	structure (neighboring joint). Built-up electroless Cu/electroplated Cu technology as shown in:	
	(c) A low magnification view of the joint geometry. (d) A high magnification view of the	
	laver structure (neighboring joint)	247
38	(a) SEM and (b) optical micrograph cross section of the solder joint of a small outline	
2.0	integrated circuit (SOIC) package showing the Cu leads	248
30	Flow chart for the precleaning of stainless steels	259
3.10	Precipitation hardening aging curves of <i>tensile strength</i> for: (a) 2024 and (b) 6061 wrought Al allows	267
3.10	Schamatic diagram of the abragive soldering procedure	207
2.12	Schematic diagram of the set up for ultrasonia soldaring: (a) Horns immersed into the	
5.12	solder not including partiagnt geometric percentary (h) An ultresonic soldering "not "	272
2 1 2	Solder pol, including pertinent geometric parameters. (b) An utilasonic soldering pol.	
5.15	solder hash. Duquancy provides the driving force	272
2 1 4	(a) Schematic diagram illustrating correction of an Al allow have metal having a Cu or Ni	213
3.14	(a) Schematic diagram illustrating corrosion of an Al alloy base metal naving a Cu or Ni	
	solderable linish only. (b) Improved corrosion resistance of AI alloy having the Cu or M	274
2.15	solderable finish plus a Cd or Zh anodic layer	274
3.15	Effect of exposure to high temperatures and prolonged time periods on the: (a) tensile	070
2.16	strength and (b) yield strength of AZ31B-H24 Mg alloy	278
3.10	Optical micrograph of the microstructure of a $50-50 \text{ Al}_2\text{O}_3/\text{Mo}$ cermet. The light phase is the	207
2.17	Al ₂ O ₃ ; the dark phase is the Mo component	287
3.17	Schematic diagram of the firing process of a thick film ink, showing the segregation process	
	whereby most of the glass adhesion material diffuses to the ink/ceramic substrate interface.	••••
2 10	The metal component forms the solderable coating	289
3.18	Plot of solid-state, intermetallic compound layer growth rates as a function of temperature	
	for the Au/50In-50Pb and Au-3Pd/50In-50Pb systems. The growth kinetics are linear with	200
	time in both cases	290
4.1	Schematic diagram of a tube-and-sleeve joint that illustrates the application of flux and the	•••
	flow of solder during a hand soldering process	294
4.2	Schematic diagram of a tube/manifold joint that has been soldered from both sides. The first	
	joint (a) solidifies and forms a blockage that prevents flux and volatiles from escaping the joint	296
4.3	Schematic diagram illustrating the process of a reactive flux; Al is exemplified in this case	304
4.4	Schematic diagram of the application of an inert gas blanket to exclude the air atmosphere	
	from the immediate vicinity of a solder joint	306
4.5a	Vapor pressure/temperature chart for several elemental metals	307
4.5b	Vapor pressure/temperature chart for several elemental metals	308
4.5c	Vapor pressure/temperature chart for several elemental metals	309
5.1	Schematic diagram of the application methods for solder paste: stencil or screen printing	
	and dispensing	311
6.1	Schematic diagram showing the preference for solder flow parallel to grooves and the limited	
	flow perpendicular to them: (a) Sessile drop on a flat plate. (b) Scratches parallel to the tube	
	axis that accentuates of solder flow vs. (c) circumferential scratches or grooves perpendicular	
	to the tube axis that will hinder solder spreading	317

6.2	Schematic diagram of the logistics for identifying a suitable solder and developing a soldering process to make the joint	321
63	Soluting process to make the joint	
0.5	cutting or forming a workpiece having a solder joint in it.	323
64	Schematic diagram of two types of soldering iron: (a) Electrical resistance heat source	
0.4	(b) Flame source.	324
65	Schematic diagram of a water tank that illustrates the input reservoir and drain of thermal	
0.5	energy in a soldering iron situation	325
66	Schematic diagram denicting the soldering of two Cu rods to illustrate the computation of	
0.0	soldering iron power rating vs. joint configuration and desired temperature rise	378
67	Four basic geometries of soldering iron tipe: (a) Chical (b) Conical (c) Pyramid (d) Ball	320
6.9	Schematic diagram of the context geometry between the coldering iron tip and flet or	
0.8	schematic diagram of the contact geometry between the soldering from up and that of	220
6.0	Found suffaces	
0.9	Schematic diagram of the manual soldering of a pin/collar assembly, using a soldering from	
6.10	Schematic diagram of techniques to control the concentricity between a tube and a collar:	222
C 11	(a) spacer wires and (b) fixturing	
6.11	Schematic diagram showing preferred orientation of the workpiece to assist solder flow	222
	by the action of gravity	
6.12	Through-hole circuit board for telecommunications applications	
6.13	Schematic diagrams of some of the leaded component package configurations used in	
	through-hole electronic circuit boards	
6.14	Schematic diagram of single-sided, double-sided and multilayer through-hole	
	solder joints found on electronic circuit boards	334
6.15	Schematic diagram of the through-hole solder joint, including material and structural details	
6.16	Photographs of four conditions of a fuel gas of flame: (a) Pure gas (acetylene) flame	
	burning solely on O ₂ from the air. (b) Carburizing flame. (c) Neutral flame. (d) Oxidizing flame	
6.17	Photographs of the torch soldering process for a tube-and-fitting: (a) Determining the proper	
	tube lengths. (b) Removing burrs and flash from the cut surfaces. (c) Cleaning (sanding) the	
	tube section (exterior surface). (d) Cleaning the fitting section with a brush (interior surfaces).	
	(e) Applying flux to the tube section (exterior surface). (f) Applying flux to the fitting section	
	(interior surface). (g) Assembling the tube and fitting. (h) Heating the assembly.	
	(i) Performing the soldering operation	
6.18	Schematic diagram of the effects of tube distortion on the solder joint: (a) Concentric parts.	
	(b) Regions of poor fit-up (minimum gap) and overly large gaps will prevent the	
	formation of a satisfactory solder joint when distorted tubes are used	
6.19	Schematic diagram of the process by which a solder joint of horizontal orientation is made:	
	(a) Solder is reflowed at the bottom of the joint which solidifies to establish a "dam."	
	(b) Form the joint from the "8 o'clock" position to the "12 o'clock" position.	
	(c) Complete the joint by soldering from the "4 o'clock" position to the	
	"12 o'clock" position	
6.20	Schematic diagram of soldering joints of cylindrical geometry so as to avoid residual stress	
	buildup: (a) Tube and sleeve assembly. (b) Solder one half of the circumferential gap in a	
	counterclockwise direction. (c) Complete the other half of the gap, starting at the same place	
	and moving in a clockwise direction.	
6.21	Schematic diagrams of typical joint geometries that are frequently assembled by torch soldering	
	(keep in mind that orientations of the joint gap can be vertical or horizontal): (a) Cylindrical	
	butt joints. (b) Plate butt joints. (c) Lap joint (which includes the tube-and-sleeve joint or	
	other cylindrical geometries).	
6.22	Schematic diagram illustrating the preplacement of solder preforms at the entrance of the	
	joint gap that will allow the solder to fill by capillary action, thus ensuring the removal	
	of flux volatiles. The chamfer on the part eliminates the corner edge, thus facilitating solder	
	entry into the gap	
6.23	Schematic diagram of the surface tension effect by molten solder for aligning parts during	
	formation of the joints. (Additional illustrations are found in Figure 1.97.)	

 6.25 Schematic diagrams of the batch furnace (a) and in-line furnace concepts (b, c). The in-line furnace can use radiation/convection heat modes (b) or thermal conduction (c)	6.24	Schematic diagram of the steps in an automated, torch soldering process: (a) Fluxing followed by (b) assembly of the parts. (c) Torch soldering process. (d) The finished solder joint	350
 6.26 Schematic diagram of an idealized furmace process (solid plot) and the more likely profile (dashed plot)	6.25	Schematic diagrams of the batch furnace (a) and in-line furnace concepts (b, c). The in-line furnace can use radiation/convection heat modes (b) or thermal conduction (c)	351
bits profile (dashed plot) 3 6.27 Ellingham diagram 3 6.28 Schematic diagram illustrating the use of a weight to "mechanically" assist the wetting and spreading of the solder 3 6.29 Schematic diagram of the preheat stage of a soldering process: (a) A single, continuous heat up to a preheat temperature hold. (b) Preheat stage comprised of a series of smaller ramp/hold combinations. 3 6.30 Schematic diagram of a temperature cycle showing "overshoot," "undershoot," and "ringing" at the conclusion of a temperature ramp. 3 6.31 SEM optical micrograph of an electronic solder joint illustrating the formation of solder balls 3 6.32 Modification to the preheat step to accommodate the higher temperature solders. The steady ramp may also be replaced with a sequence of ramp/hold segments (see Figure 6.29) 3 6.31 Schematic diagrams of distortion resulting from differential heating rates and part geometry: (a) Parts of varying sections with the thinner section heated up more rapidly than the interker section. (b) Outer surface is heated more rapidly than the interior of a thick section. 3 6.33 Schematic diagram illustrating the use of the interlayer in a dissimilar metal solder joint as a means of reducing the residual stress levels. The thermal expansion coefficient of base material #1 (α _x) is less than that of base material #2 (α _x). AT <0 indicates conditions for a cooling step. Deformation by the interlayer material #2 (α _x). AT <0 indicates conditions for a cooling st	6 26	Schematic diagram of an idealized furnace process (solid plot) and the more likely	
 6.27 Ellingham diagram 6.28 Schematic diagram illustrating the use of a weight to "mechanically" assist the wetting and spreading of the solder 6.29 Schematic diagram of the preheat stage of a soldering process: (a) A single, continuous heat up to a preheat temperature hold. (b) Preheat stage comprised of a series of smaller ramp/hold combinations. 6.30 Schematic diagram of a temperature cycle showing "overshoot," "undershoot," and "ringing" at the conclusion of a temperature ramp 6.31 SEM optical micrograph of an electronic solder joint illustrating the formation of solder balls 6.32 Modification to the preheat step to accommodate the higher temperature solders. The steady ramp may also be replaced with a sequence of ramp/hold segments (see Figure 6.29) 6.33 Schematic diagrams of distortion resulting from differential heating rates and part geometry: (a) Parts of varying sections with the thinner section heated up more rapidly than the thicker section. (b) Outer surface is heated more rapidly than the interior of a thick section. (c) Nonuniform heating through the material (top-to-bottom) results in a warping of the part. In each case, the outer areas that were more rapidly heated will be distorted by compressive stresses generated at T₁ and residual stress levels. The thermal expansion coefficient of base material #1 (α, top) is less than that of base material #2 (α, top). ΔT <0 indicates conditions for a cooling step. Deformation by the interlayer material reduces the magnitude of the thermal expansion mismatch residual stresses between base materials #1 (compressive) and #2 (tensile). 36.37 Schematic diagram of a temperature solder fixturing solder joint. 36.38 Schematic diagram of a temperate solut are more laborate fixturing for controlling the joint. 36.39 Schematic diagram of a periodical tensile reduces the magnitude of the thermal expansion mismatch residual stresses between base material #1 (compress	0.20	profile (dashed plot)	355
6.28 Schematic diagram illustrating the use of a weight to "mechanically" assist the wetting and 8.29 Schematic diagram of the preheat stage of a soldering process: (a) A single, continuous heat up to a preheat temperature hold. (b) Preheat stage comprised of a series of smaller ramp/hold combinations. 3 6.30 Schematic diagram of a temperature cycle showing "overshoot," "undershoot," and "ringing" at the conclusion of a temperature ramp. 3 6.31 Stomatic diagrams of an electronic solder joint illustrating the formation of solder balls. 3 6.32 Modification to the preheat step to accommodate the higher temperature solders. The steady ramp may also be replaced with a sequence of ramp/hold segments (see Figure 6.29) 3 6.33 Schematic diagrams of distortion resulting from differential heating rates and part geometry: (a) Parts of varying sections with the thinner section heated up more rapidly than the thicker section. (b) Outer surface is heated more rapidly than the interior of a thick section. (c) Nonuniform heating through the material (top-to-bottom) results in a warping of the part. 3 6.33 Schematic diagram illustrating the use of the interlayer in a dissimilar metal solder joint as a means of reducing the residual stress levels. The thermal expansion coefficient of base 3 6.34 Schematic diagram illustrating the use of fixturing solder joints: (a) Wiring the two substrates 10	6.27	Ellingham diagram	
 spreading of the solder	6.28	Schematic diagram illustrating the use of a weight to "mechanically" assist the wetting and	
 6.29 Schematic diagram of the preheat stage of a soldering process: (a) A single, continuous heat up to a preheat temperature hold. (b) Preheat stage comprised of a series of smaller ramp/hold combinations	0.20	spreading of the solder	
 heat up to a preheat temperature hold. (b) Preheat stage comprised of a series of smaller ramp/hold combinations	6.29	Schematic diagram of the preheat stage of a soldering process: (a) A single, continuous	
ramphold combinations	/	heat up to a preheat temperature hold. (b) Preheat stage comprised of a series of smaller	
 6.30 Schematic diagram of a temperature cycle showing "overshoot," "undershoot," and "ringing" at the conclusion of a temperature ramp		ramp/hold combinations	364
"ringing" at the conclusion of a temperature ramp 3 6.31 SEM optical micrograph of an electronic solder joint illustrating the formation of solder balls 3 6.32 Modification to the preheat step to accommodate the higher temperature solders. The steady ramp may also be replaced with a sequence of ramp/hold segments (see Figure 6.29) 3 6.33 Schematic diagrams of distortion resulting from differential heating rates and part geometry: (a) Parts of varying sections with the thinner section heated up more rapidly than the thicker section. (c) Nonuniform heating through the material (top-to-bottom) results in a warping of the part. In each case, the outer areas that were more rapidly heated will be distorted by compressive stresses generated at T ₁ and residual tensile stresses at T ₀ . 3 6.34 Schematic diagram illustrating the use of the interlayer in a dissimilar metal solder joint as a means of reducing the residual stress levels. The thermal expansion coefficient of base material #1 (u ₁) is less than that of base material #2 (u ₂). ΔT <0 indicates conditions for a cooling step. Deformation by the interlayer material #1 (compressive) and #2 (tensile)	6.30	Schematic diagram of a temperature cycle showing "overshoot," "undershoot," and	
 6.31 SEM optical micrograph of an electronic solder joint illustrating the formation of solder balls		"ringing" at the conclusion of a temperature ramp	364
 6.32 Modification to the preheat step to accommodate the higher temperature solders. The steady ramp may also be replaced with a sequence of ramp/hold segments (see Figure 6.29)	6.31	SEM optical micrograph of an electronic solder joint illustrating the formation of solder balls	365
 steady ramp may also be replaced with a sequence of ramp/hold segments (see Figure 6.29)	6.32	Modification to the preheat step to accommodate the higher temperature solders. The	
 6.33 Schematic diagrams of distortion resulting from differential heating rates and part geometry: (a) Parts of varying sections with the thinner section heated up more rapidly than the thicker section. (b) Outer surface is heated more rapidly than the interior of a thick section. (c) Nonuniform heating through the material (top-to-bottom) results in a warping of the part. In each case, the outer areas that were more rapidly heated will be distorted by compressive stresses generated at T₁ and residual tensile stresses at T₀		steady ramp may also be replaced with a sequence of ramp/hold segments (see Figure 6.29)	
 (a) Parts of varying sections with the thinner section heated up more rapidly than the thicker section. (b) Outer surface is heated more rapidly than the interior of a thick section. (c) Nonuniform heating through the material (top-to-bottom) results in a warping of the part. In each case, the outer areas that were more rapidly heated will be distorted by compressive stresses generated at T₁ and residual tensile stresses at T₀	6.33	Schematic diagrams of distortion resulting from differential heating rates and part geometry:	
 section. (b) Outer surface is heated more rapidly than the interior of a thick section. (c) Nonuniform heating through the material (top-to-bottom) results in a warping of the part. In each case, the outer areas that were more rapidly heated will be distorted by compressive stresses generated at T₁ and residual tensile stresses at T₀		(a) Parts of varying sections with the thinner section heated up more rapidly than the thicker	
 (c) Nonuniform heating through the material (top-to-bottom) results in a warping of the part. In each case, the outer areas that were more rapidly heated will be distorted by compressive stresses generated at T₁ and residual tensile stresses at T₀		section. (b) Outer surface is heated more rapidly than the interior of a thick section.	
 In each case, the outer areas that were more rapidly heated will be distorted by compressive stresses generated at T₁ and residual tensile stresses at T₀		(c) Nonuniform heating through the material (top-to-bottom) results in a warping of the part.	
 stresses generated at T₁ and residual tensile stresses at T₀		In each case, the outer areas that were more rapidly heated will be distorted by compressive	
 6.34 Schematic diagram illustrating the use of the interlayer in a dissimilar metal solder joint as a means of reducing the residual stress levels. The thermal expansion coefficient of base material #1 (α₁) is less than that of base material #2 (α₂). ΔT <0 indicates conditions for a cooling step. Deformation by the interlayer material reduces the magnitude of the thermal expansion mismatch residual stresses between base materials #1 (compressive) and #2 (tensile)		stresses generated at T1 and residual tensile stresses at T0	373
 as a means of reducing the residual stress levels. The thermal expansion coefficient of base material #1 (α₁) is less than that of base material #2 (α₂). ΔT <0 indicates conditions for a cooling step. Deformation by the interlayer material reduces the magnitude of the thermal expansion mismatch residual stresses between base materials #1 (compressive) and #2 (tensile)	6.34	Schematic diagram illustrating the use of the interlayer in a dissimilar metal solder joint	
 material #1 (α₁) is less than that of base material #2 (α₂). ΔT <0 indicates conditions for a cooling step. Deformation by the interlayer material reduces the magnitude of the thermal expansion mismatch residual stresses between base materials #1 (compressive) and #2 (tensile)		as a means of reducing the residual stress levels. The thermal expansion coefficient of base	
 step. Deformation by the interlayer material reduces the magnitude of the thermal expansion mismatch residual stresses between base materials #1 (compressive) and #2 (tensile)		material #1 (α_1) is less than that of base material #2 (α_2). $\Delta T < 0$ indicates conditions for a cooling	
 mismatch residual stresses between base materials #1 (compressive) and #2 (tensile)		step. Deformation by the interlayer material reduces the magnitude of the thermal expansion	
 6.35 Schematic diagrams of approaches to fixturing solder joints: (a) Wiring the two substrates together with a preform. The gap dimension can be maintained by a spacer of wettable wire placed in the gap (b). Shown in (c) and (d) are more elaborate fixturing for controlling the joint		mismatch residual stresses between base materials #1 (compressive) and #2 (tensile)	377
 together with a preform. The gap dimension can be maintained by a spacer of wettable wire placed in the gap (b). Shown in (c) and (d) are more elaborate fixturing for controlling the joint	6.35	Schematic diagrams of approaches to fixturing solder joints: (a) Wiring the two substrates	
 placed in the gap (b). Shown in (c) and (d) are more elaborate fixturing for controlling the joint		together with a preform. The gap dimension can be maintained by a spacer of wettable wire	
 6.36 Assortment of configurations for self-jigging the substrates used in a solder joint		placed in the gap (b). Shown in (c) and (d) are more elaborate fixturing for controlling the joint	378
 6.37 Schematic diagram of techniques to reduce friction forces between the workpieces and the fixturing: (a) Vertical orientation replaces the horizontal arrangement. (b) Rollers to reduce friction3 6.38 Schematic diagram of a retort. The retort design must be able to withstand vacuum and positive pressure internal environments when used	6.36	Assortment of configurations for self-jigging the substrates used in a solder joint	380
 fixturing: (a) Vertical orientation replaces the horizontal arrangement. (b) Rollers to reduce friction3 6.38 Schematic diagram of a retort. The retort design must be able to withstand vacuum and positive pressure internal environments when used	6.37	Schematic diagram of techniques to reduce friction forces between the workpieces and the	
 6.38 Schematic diagram of a retort. The retort design must be able to withstand vacuum and positive pressure internal environments when used		fixturing: (a) Vertical orientation replaces the horizontal arrangement. (b) Rollers to reduce friction	383
 positive pressure internal environments when used	6.38	Schematic diagram of a retort. The retort design must be able to withstand vacuum and	
 6.39 Schematic diagram of the condensation of water vapor into liquid as a function of decreasing temperature. The condensation (phase change process), which starts at point B with 100% vapor and is completed at point C with 100% liquid, takes place entirely at the same temperature, 100°C (212°F)		positive pressure internal environments when used	384
 temperature. The condensation (phase change process), which starts at point B with 100% vapor and is completed at point C with 100% liquid, takes place entirely at the same temperature, 100°C (212°F)	6.39	Schematic diagram of the condensation of water vapor into liquid as a function of decreasing	
 and is completed at point C with 100% liquid, takes place entirely at the same temperature, 100°C (212°F)		temperature. The condensation (phase change process), which starts at point B with 100% vapor	
 6.40 Schematic diagram of the vapor phase reflow apparatus. Only a single fluid is present in this illustration		and is completed at point C with 100% liquid, takes place entirely at the same temperature,	205
 6.40 Schematic diagram of the vapor phase reflow apparatus. Only a single fluid is present in this illustration	C 10	100°C (212°F)	385
 6.41 Schematic diagram of the use of photoresist films for the selective deposition of solder coatings by the dipping process	6.40	Schematic diagram of the vapor phase reflow apparatus. Only a single fluid is present in this	200
 6.41 Schematic diagram of the use of photoresist films for the selective deposition of solder coatings by the dipping process	C 41		380
 6.42 Schematic diagram of: (a) the "not recommended" technique and (b) the "preferred" technique to dip solder parts having a <i>blind</i> hole or gap. In case (b), the angle θ should be sufficiently large to allow solder to gradually fill the hole before the opening is covered by the bath	0.41	Schematic diagram of the use of photoresist films for the selective deposition of solder coatings	200
 6.42 Schematic diagram of: (a) the not recommended technique and (b) the preferred technique to dip solder parts having a <i>blind</i> hole or gap. In case (b), the angle θ should be sufficiently large to allow solder to gradually fill the hole before the opening is covered by the bath	6 40	S - h - modified discontinuation of the first manufacture and the first sector of the	390
 to dip solder parts having a <i>blinta</i> hole of gap. In case (b), the angle 6 should be sufficiently large to allow solder to gradually fill the hole before the opening is covered by the bath	6.42	Schematic diagram of: (a) the "not recommended" technique and (b) the "preferred" technique	
 6.43 Schematic diagram of the solder breakaway as a part is withdrawn from the molten solder bath: icicle formation (a-c) and bridge formation (d-f)		to allow solder to gradually fill the hole before the opening is covered by the beth	201
bath: icicle formation (a-c) and bridge formation (d-f)	6 12	Schemetic diagram of the solder breekeway as a part is with drawn from the malter solder	391
vaui. 101010 101111au011 (a-c) allu 0110gc 101111au011 (u-1)	0.43	bath: icicle formation (a, c) and bridge formation (d, f)	302
6.4.4 Schematic diagram of two orientations of a part being withdrawn from the colder both	6 1 1	Schematic diagram of two orientations of a part being withdrawn from the solder both	
(a) 0° angle that has the propensity to form icicles and bridges and is not recommended	0.44	(a) 0° angle that has the propensity to form icicles and bridges and is not recommended	
(b) Withdrawal at an angle $>0^\circ$ allows a "neel back region" that minimizes icicle and		(b) Withdrawal at an angle $>0^{\circ}$ allows a "neel back region" that minimizes icicle and	
bridge defects		bridge defects	394

6.45	Schematic diagram of the penetration radius of the molten solder in a concave corner for a part immersed into the molten solder bath. The immersion depth is Δh and the solder surface curvature,	R395
6.46	Schematic diagram of the drag soldering process	
6.47	Schematic diagram of the wave soldering apparatus	
6.48	Schematic diagram of the solder wave as exemplified by an electronic part. The three positions	
	in the wave, the entry region (A), the soldering region (B), and the "peel-back" region (C)	
	have well-defined properties that are all important toward minimizing solder joint defects	
6.49	Schematic diagram of the more widely used solder wave geometries: T-wave, extended	
	T-wave; lambda wave; and the dual wave	400
6.50	Schematic diagram showing part directions with respect to the solder wave for making a	
	"proposed solder joint." (a) The preferred direction is "B." (b) Using direction "A" will result	
	in the possibility of the wettable area being skipped by the solder wave	401
6.51	Schematic diagram of the hot air level process to produce thin solder coatings on workpieces.	
	This procedure has also been developed with the horizontal orientation as an in-line process	402
6.52	Schematic diagram of a sample and coils for induction soldering	406
6.53	(a) Schematic diagram of the magnetic field created along a section of electrical conductor	
	attached to a DC voltage (battery). Note the relationship between the direction of the current in	
	the conductor and the direction of the magnetic field lines. (b) Steady magnetic field resulting	
	from current passing through a coil conductor	408
6.54	Schematic diagram of the formation of eddy currents in a conductive piece of material	
0.0	(e.g., iron) when it is placed into the <i>alternating</i> magnetic field	
6.55	Schematic diagram showing the formation of eddy currents set up by the induction coil	
0.00	and are located along the surface of the material ("skin effect")	
6.56	Schematic diagrams illustrating the effects of (a) coil proximity, x and (b) coil pitch. N/L	
0.00	on the heated zone in the workpiece	
6 57	Schematic diagrams of various coil geometries and workpiece configurations	412
6 58	Schematic diagram of the use of coil/workpiece separation (x) and coil pitch (N/L)	
0.20	to adjust the initial heat (temperature) distribution in the workpiece. Sample conditions	
	include: (a) Uniform separation (x) and uniform pitch (N/L) (b) Nonuniform x uniform N/L	
	(c) Uniform x, nonuniform N/L_c (d) Edges and corners that become regions of flux line	
	concentrations and have the potential to be "hot spots" there	413
6 59	Schematic diagram of the use of shielding to remove the magnetic field influence from	
0.07	the workpiece	
6.60	Schematic diagram of the effects of an electric field E on the charge distribution (dipoles)	
0.00	that polarize (P) a material as the basis for microwave heating	417
6 61	Schematic diagram of the resistance heating process for the lap joint geometry. A higher	
0.01	magnification view of the joint region shows the surface asperities typically present on the	
	substrate and solder where they form the mutual interface(s)	418
6 62	Schematic diagram of resistance heating of a bi-material joint in which one of the materials	
0.02	is not electrically conductive. The electrodes are used to heat the electrically conductive	
	substrate material. The nonconductive material is "proximity" heated by conduction from	
	the first substrate material	421
6 63	The electromagnetic spectrum: frequency is represented on the left vertical axis and	
0.05	the corresponding wavelength is represented on the right vertical axis	424
6 64	Percent reflectance (or transmittance) as a function of light wavelength for a number	
0.04	of materials	425
6 65	(a) Photograph of an ultrasonic soldering apparatus with a (Cu) substrate in place	
0.05	above the solder bath centered between the horns (b) Schematic diagram of the	
	system in (a)	120
6 66	(a) Schematic diagram illustrating the limited meniscus rise on a vertical surface under	
0.00	(a) schematic utagram musulating the minicul memiscus rise off a ventical sufface under utagram and in the absence of a flux. (b) The sample is immersed into the	
	hath. The buoyancy force causes some intimate contact between the moltan solder and	
	the bottom edge of the coupon so that ultrasonic action can remove the oxide layer	
	(c) The buoyancy force drives the meniscus rise to the same level as the bath, but	
	the buoyancy force in heriscus rise to the same level as the bath, but	130
		+

6.67	Capillary rise as a function of gap width for Cu samples exposed to 60Sn-40Pb solder (250°C/482°F) for 15 s of ultrasonic activation. The baseline samples used a rosin-based,	
	mildly activated flux coating on the substrate surface prior to immersion in the bath.	
	No ultrasonic activation was used in this latter case	.431
6.68	Schematic illustration depicting the cleaning action of saponifier (detergent) molecules.	
	The saponifier molecule attaches to the residue by an organic bond. The slightly polar	
	nature of the saponifier molecules causes them to also be attracted to the water molecules.	
	The water molecule removes the saponifier molecule along with the residue particles from the surface	.439
6.69	Cascade washing process. The part moves "uphill" to successively cleaner baths until	
	it is fully cleaned at the end of the process line	.440
7.1	Optical photographs of electronic (through-hole) solder joints made of: (a) 63Sn-37Pb solder. (b) 96 5Sn-3 5Ag solders. The fillet of the latter solder joints have a duller surface appearance	
	(b) 50.55h-5.5Ag solders. The finet of the fatter solder joints have a duner surface appearance, owing solely to the composition	448
72	Schematic diagram illustrating poor solder wetting/spreading (solderability) (a) This defect is	. 110
/.2	represented by poor fillet rise on vertical surfaces and inadequate spreading over the	
	solderable surface (i.e., the surface that was intended to be covered). (b) Poor solderability may	
	also appear as an incomplete filling of gaps or holes	.449
7.3	Schematic diagram showing void formation in a solder joint. Voids that intersect the fillet	
	surface are referred to as "blowholes." Sidebar (b) illustrates the formation of a void caused	
	by volatile and/or gas formation. A thin solder film forms at the substrate surface.	
	However, when such voids are formed by nonwetting conditions, the solder film is absent	
	from the culprit surface	.450
7.4	Schematic diagram of bleed or inspection holes in a substrate that are used to monitor the	150
75	progress of solder flow down a long gap or hole	.456
1.5	SEM micrograph of a Cu strap soldered to the anode end of a PIN diode	.457
7.0	(a) Optical incrograph of the incrostructure of a Sir-Ag-Di solder, showing the Ag ₃ Sh	
	showing the $Ag_s Sn$ particles but also, clearly delineating the white Bi-rich zones in the	
	matrix which are not visible in (a)	.458
7.7	Schematic diagram of the equipment configuration for X-ray radiography. X-rays are generated	
	at the X-ray tube source. They pass through a collimator so as to give them a consistent direction	
	of propagation. The X-rays pass through the workpiece; the exiting X-rays are then captured	
	on photographic film	.459
7.8	Schematic diagram detailing the passage of the X-rays through the workpiece.	
	Where there is more workpiece mass, there is a greater extent of scattering of the X-rays away	
	from their initial "line-of-sight," and therefore, a lower intensity of X-rays exiting the part to	
	strike the photographic plate behind it	.460
7.9	A "reverse-positive" print, that is, the image as it would be seen in the actual X-ray film (111)	
	(which is the negative) of a $75 \mu\text{m}$ (0.003 in.) thick solder joint that was formed between two	
	delineated by the brighter area. The dark circles in the joint are voids. The spacer bars (3) used	
	to set the gap are visible at the top of the photograph	461
7.10	Schematic diagram of ultrasonic inspection. The system typically rests in a fluid to facilitate	. 101
/110	the transmission of waves to and from the workpiece. Incident sonic waves from the source as	
	it scans the part, strike the workpiece and are transmitted through it. Discontinuities in the part	
	structure (e.g., a void in the solder joint) disrupt that transmission, resulting in the eflection of some	
	energy back to the source. The detector which scans at the opposite side of the part (transmission	
	mode) detects the region of depleted sonic energy as a potential defect	.462
7.11	Schematic diagram illustrating the scattering process responsible for ultrasonic imaging.	
	The scattering of incident sonic energy occurs at the interfaces of mass changes in the	
	structure. Although the scattering process at the base material/void interface has been highlighted a similar process (of different magnitude) will also accur at other interfaces	
	such as at the base material/solder interface	463
		. 105

7.12	(a) Photograph of a workpiece comprised of two ceramic plates (one is underneath) soldered to a stainless plate. (b) Transmission mode ultrasonic image of the assembly. Low attenuation, that is, low signal loss, (light gray to white) indicates a good bond while high attenuation (dark gray to black) illustrates the poor bond areas. (c) X-ray radiograph of the same part,	
	illustrating that the X-ray technique is ineffective at discerning bond defects in the joints	464
7.13	Schematic diagram of the reflecting (pulse-echo) technique. The bond on the same	
	side as the source/detector combination is analyzed. Specifically, any signal attenuation	
	will occur from the ceramic/solder interface since it is the first discontinuity struck by the	
	incident waves	465
7.14	Schematic diagram of the thermal (heat) conduction through a part having a solder joint.	
	The presence of a void causes a local loss in heat conduction efficiency that appears as a	
	"cool spot" by the detector on the side opposite to the source	466
7.15	Schematic diagram of the thermal transfer technique for inspection of a fin/tube	
	solder joint. The measured values of $T_{e_{r}}$ To, and, Tf are compared against theoretical	
	computations or baseline experimental data to determine the integrity of the	
	solder joint(s)	
7 16	Schematic diagram of the setup to assess butt joint integrity by thermal transfer	107
7.10	technique. Theoretical computations or baseline data are compared to the measured	
	values of T_{and} T_{a} to determine the heat transfer efficiency of the solder joint	468
7 17	values of Γ_0 and Γ_1 to determine the near transfer efficiency of the solder joint	+00
/.1/	(a) Filotograph of the <i>macrostructure</i> of a connector in cross section, showing the	
	of the microstructure of the solder joints	472
7 10	Schemetic discusses the discussion and longitudinal (aris) and a the discussion	472
/.18	Schematic diagram showing the diametrical and longitudinal (axial) cuts of a tube/sleeve	474
- 10	lap solder joint configuration	4/4
7.19	Schematic diagram showing the taper section technique	475
7.20	Schematic diagram showing preferential polishing (or "polishing relief") followed by substrate rounding in a solder joint metallographic specimen	475
7.21	Schematic diagram of rounding of a solder film, and the use of a protection layer to	
	prevent the preferential loss by the solder material	476
7.22	Schematic diagram of the process of particle pull-out arising from the polishing process	
	of solder alloys and solder joints	
7 23	Ontical micrographs of 63Sn-37Pb/Cu solder joints in: (a) The as-polished condition	
1.20	(b) The polished and etched condition. The etching procedure was 3 s in a solution of	
	(6) mL ethanol 30 mL deionized $H_{2}O_{2}$ 5 mL HCl 2 gm FeCl ₂) followed by 5 s in a	
	solution of 25 mL DI H ₂ O, 25 mL NH ₂ OH 1 mL 30% H ₂ O ₂)	478
7 24	Schematic diagram of oblique illumination that is used in light microscopy Bright	170
1.24	field illumination occurs when $\theta = 0^{\circ}$	480
7 25	(a) Bright field image of the deformation features surrounding a Vicker's microhardness	
1.25	(a) Dright field into a poliched. Sn. A.g. Bi solder sample. (b) The same indeptation was	
	viewed with differential interference contrast microscopy: the deformation is more	
	clearly delineated by this technique	181
7 76	Transmission electron misrographs of 62Sn 27Dh solder ofter cooling at 100%C/min/180%E/min/	401
7.20	Transmission electron micrographs of 05Sh-5/PD solder after cooling at 100°C/min/180°F/min:	
	(a) Lower magnification view snowing the Po-rich phase particles between which are dislocation	
	columns that develop into low-angle grain boundaries in the Sn-rich matrix. (b) Figher magnification	400
	view of the dislocation column in the Sn-rich matrix, between two Pb-rich particles	482
7.27	Schematic diagram of a progressive cross section through a lap joint by successive grinding and	
	polishing steps on a single specimen mount. Spacer wires placed a specific distances during the	
	encapsulation of the part will allow for a determination of the distance into the joint that is	
	reached per each polishing step	483
7.28	Schematic diagram of a longitudinal (axial) section through a tube-and-sleeve joint that is off-axis.	
	Quantitative measurements of the interface microstructure may be inaccurate due to the offset	484
7.29	Optical micrograph of the solder/substrate interface between 100In solder and Cu substrate after	
	aging at 100°C (212°F) for 10 days. Of interest is the presence of (dark) polishing particles	
	that have become embedded in the 100In field	484

7.30	Schematic diagram of voids in a solder joint undergoing mechanical testing. The footprint area	
	of the voids represent the amount of load-bearing area that is lost	486
7.31	Schematic diagram of the effect of a crack on solder joint strength	487
7.32	Schematic diagram of the mechanical test geometry of a butt joint. The mixed deformation modes	
	of tensile and shear would preclude any fundamental interpretation of the strength value, such as a	
	conversion of maximum loads into stress levels for comparison with other tabulated data	488
7.33	SEM micrograph of the fracture path that formed when the Cu lead above was peeled	
	from the alumina substrate. The arrows indicate the loading direction applied to the part.	
	The fracture path is observed to have started at the interface between the solder and the	
	Au-Pt-Pd thick film conductor and propagated from left-to-right in the photograph	489
7.34	Schematic diagram of a workpiece section after desoldering. The layers include the retained	
	solder film on top, the intermetallic compound layer and the base material at the bottom	494
7.35	Schematic diagram of voids, cracks, and delamination ("pull-away") in a tube-sleeve joint	498
A.1	Schematic diagram of the specimen geometry used to illustrate the computation of thermal	
	expansion residual stresses in the base material layers (1) and (3) and solder layer (2):	
	(a) undeformed condition and (b) deformed condition in which expansion/contraction occurs	
	linearly with position y. The parameters, a _i , represent the individual layer thicknesses	514
C.1	(a) 100 Sn (etched for grain boundary delineation); (b) 97Sn-3Cu	517
C.2	85Sn-15Pb	518
C.3	63Sn-37Pb	518
C.4	(a) 60Sn-40Pb; (b) 62.5Sn-36.1Pb-1.4Ag; (c) 62.5Sn-36.1Pb-1.4Ag (aged as part of a solder	
	joint, cooling rate unspecified)	519
C.5	(a) 95Pb-5Sn (unetched); (b) 95Pb-5Sn (etched)	520
C.6	95Sn-5Sb	520
C.7	(a) 96.5Sn-3.5Ag; (b) 95.5Sn-0.5Ag-4.0Cu; (c) 91.84Sn-3.33Ag-4.83Bi	521
C.8	91Sn-9Zn	522
C.9	96Zn-4Al (representative of the 94Zn-6Al eutectic composition)	522
C.10	(a) 50In-50Pb; (b) 90Pb-5In-5Ag	
C.11	(a) 52In-48Sn (includes black polishing particles); (b) 70 Sn-18Pb-12In	523
C.12	(a) 58Bi-42Sn (10°C/min); (b) 58Bi-42Sn (aged as part of a solder joint, cooling rate unspecified)	
C.13	66In-34Bi	524
C.14	43Sn-43Pb-14B1	524
C.15	80Au-20Sn (lightly etched)	524
C.16	88Au-12Ge	524
C.17	98Au-2S1 (representing the 9/Au-3S1 eutectic composition)	525
C18	95Cd-5Ag (DIC image)	525
C.19	68Sn-32Cd (DIC image)	
C.20	44In-42Sn-14Ca	
D.1	The thermocouple circuit	526
D.2	The multileg meriliocouple circuit	
D.3	ive as the part. The temperature measurement is secure to be a the section and in the temperature measurement is secure to be a the section and it is the section of the section and the secti	
	across the part. The temperature measurement is accurate, so long as the entire part is at a uniform temperature, accurate that the two jupations are at the same temperature.	507
D 4	Uniform temperature, assuming that the two junctions are at the same temperature	
D.4	various techniques for securing a thermocouple junction to a workpiece	

AWS Soldering Handbook

1. Fundamentals of Soldering Technology

1.1 Introduction

Joining processes, which attach two or more substrates or base materials together, be they metals, ceramics, or plastics, can be considered as coming under one of two generalized methodologies: *filler material joining*, or *fusion joining*.

Filler material joining refers to the use of a third material to form a bond between the two base materials, and includes the processes of *soldering*, *brazing*, and *adhesive bonding*. The filler material must adhere to both base materials in order to effect an adequate bond. Although the bonding mechanism in such cases may cause chemical changes at the substrate material surfaces in order to promote adhesion, *at no time does the temperature of the substrates exceed their respective melting points*.

When the melting temperature of the substrate material is exceeded, the bond is formed by a *fusion joining* process, e.g., welding. In welding, the two substrates are joined by the intermixing of their mutually molten segments. A third material, also referred to as a filler material, may be simultaneously melted and added to the molten base materials.

Because metals have been an integral part of engineered structures since the dawn of civilization, filler material joining processes have a long history of use with these base materials. However, filler metal joining methodologies have also been applied to the other materials subsets, including ceramics and plastics.

Soldering and brazing are high-temperature filler *metal* processes that are used in many engineering applications. The difference between soldering and brazing is defined by the melting temperature of the filler metal. A filler metal which has a liquidus temperature below 450°C/842°F is referred to as a *solder material*, or simply a "solder"; a filler metal with a liquidus temperature exceeding 450°C/842°F is a *brazing filler metal*. Although the distinction between the two processes is

determined solely by a melting property of the filler metals, the different temperature ranges have numerous attributes as well as drawbacks for the manufacturing processes that use either methodology. Some timely comparisons will be made throughout the text.

Lastly, it should be noted that the joining of two metals can also be realized by the use of adhesive materials, or "glues." Generally, issues that need to be resolved with the use of adhesives are:

(1) bulk strength levels to accommodate design loads;

(2) adhesion strength; and

(3) property stability (aging) over the service lifetime of the joint.

Although adhesives will certainly not replace the filler metal joining methodologies of brazing and soldering, they are finding many niche applications.

Soldering is a relatively old technology. Shown in Figure 1.1 is a time line which illustrates the 6000-year history of soldering [1]¹. Written details of the earliest uses of soldering are rare, since the art was generally practiced by slaves and considered unimportant to historians who, generally, belonged to society's upper class. Archeological evidence of soldering from the earliest periods (4000 to 2000 BCE) is limited to artifacts, primarily jewelry and adornments, constructed with gold (Au)-based solders, since these materials were very resistant to corrosive deterioration. Artifacts having tin (Sn) based solders, the foundation of today's soldering technology, are less prevalent, since Sn and Sn-based alloys more readily succumbed to corrosion by rainwater and naturally occurring chemicals in the ground.

The earliest practices with nonprecious metal solders were evidenced through the use of pure lead (Pb) by the

^{1.} The numbers in brackets correspond to those in the references in Annex E.

(Reprinted by permission, The Metallurgical Society, TMS. Journal of Metals, Vol. 45, No. 7, "Issues in the Replacement of Lead-Bearing Solders," P. Vianco and D. Frear, p. 14, Fig. 1.)

Figure 1.1—Historical time line of soldering technology.

Mesopotamians in c. 3000 BCE to join copper (Cu) pieces. Pure Pb has a melting temperature of 327°C/621°F. Tin was not readily available to the Mediterranean cultures at that time. Tin and Sn-Pb solders were developed by the Celtic and Gaul cultures of Northern Europe in c. 1900 BCE, owing to the rich Sn ore deposits of that region. At that time, Sn-Pb solders were used to assemble tools and cooking utensils that were made largely of Cu and Cu-based alloys. The Romans used Sn-Pb solders to seal the Pb liners of their aqueducts.

As with the rest of Western Civilization during the Middle Ages, soldering experienced little progress, being limited to the making of jewelry and common household implements. However, the Industrial Revolution quickly expanded the use of soldering technology, particularly with the availability of portable heat sources, i.e., compressed gas for torches and electricity for the resistive heaters in soldering irons. Plumbing, including conduit and radiators, food and water containers, as well as lightduty tools and sheet-metal construction for automobile fenders and panels were some of the many uses to which soldering was applied. However, it was the advent of electronics in the early 20th century, and its continuing evolution to the present day, which has quickly become the hallmark application of soldering technology.

Today, soldering technology can be categorized into two general fields based upon application:

(1) *electronics soldering*, which describes the assembly of silicon microchip devices, printed circuit boards, motherboards, and connectors for the purpose of electrical signal transmission; and

(2) *structural soldering*, which pertains to the role that is primarily that of mechanical fastening, i.e., non-electronic applications.

Clearly, many of the advances in soldering technology over the past half-century, both in the development of materials as well as new processes, have taken place in the electronics arena. However, these new materials and processes as well as an enhanced understanding of electronic solder joint properties can be applied equally to structural soldering applications. Failure to incorporate this increased understanding of solder joint behavior into larger scale, structural applications will only result in higher-than-necessary manufacturing costs, and an increased likelihood of poor product reliability. Irrespective of the source of innovation, all of soldering